Lecture 17: Biological-physical coupling

* Topics:
— Finish zooplankton
e Herbivore growth

e Secondary production
 Some examples of zooplankton behavior

— Scales of variability

e Scales <1 km, Scales <1000 km, Scales ~1000’s
of km

* Mesoscale eddies (today and finish on Monday)



Exam #3
 Wed., March 17t

e Duration: 1 h, 45 min (you will have 2 h to
complete the exam)

* Format:
— short answer (20 points)

— 3 longer answer (there will be choice) [e.g. choose
3 out of 4] (30 points)

— Total: 50 points, 20% of grade



Monday

* |Integration and review for exam
e Assighment due Tuesday, March 16", 5 pm



Evaluation of secondary production (2°P)

(1) Physiologic method:
e 2°P=TA-R—-E-M
— Allometry: Rate of growth = a(Weight)P

(2) Summing of growth x biomass:
(A) Vidal (1980)
* Growth is a function of temperature, food availability and
size of individual
e Fitto an Ivlev curve:
R=R_. (1-e*F)
— R =rate controlled by limiting factor with availability ‘F’
— Ris max as F =2 infinity
— Ais slope of the curve

e Vidal substituted food concentration for F



Evaluation of secondary production (2°P)

(2) Summing of growth x biomass:

e Evaluate growth directly from field observations of the
increase in size of individuals in a cohort

(B) Jensen (1919) equation:
adult

0
2°P=>» G,B,
— i = life cycle stage =1
— G, = weight-specific growth rate of ith stage
— B, = mean biomass of life cycle stage in the habitat

 Measure growth of different stages separately and add
them up



Controls on secondary production
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Hirst and others:
development time, body
size, spawning mode, food
availability

 Secondary production

has little to no relation
to temperature

No consensus
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Phenology

The relationship between a periodic biological
phenomenon and climatic conditions

* For zooplankton:

— Feeding (match-mismatch hypothesis, D.H.
Cushing)

— Diapause: means to survive predictable,
unfavorable or adverse environmental conditions,
such as temperature extremes or reduced food
availability

e Often observed in arthropods



Other important behavior patterns

* Diel vertical migration (covered in earlier
lecture)

 Creators of turbulence in low-turbulence
environments (Kunze et al., 2006; Katija &

Dabiri, 2009)
* Aggregation at or near fronts



Zooplankton in the Columbia River plume

Peterson & Peterson, 2008
(ICES J. Mar Sci)

LOPC data
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Peterson & Peterson (2008), Figure 2. Salinity (top), Chl a (middle), and
zooplankton abundance (bottom) along cross-shelf transects (indicated
by arrows in Figure 1) just south of the Columbia River mouth during the
May (left) and June (right) surveys. The pycnocline (solid white line) and
thermocline (solid black line) are shown in each panel.



Zooplankton accumulate at fronts,
especially near the surface
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Processes on scales <1 km

Turbulent motion
— Turbulent energy

Viscosity

— Reynolds number (Re) = from last class: ratio of intertial
to viscous forces

— Low Re, viscous world (laminar flow); high Re, turbulent
world (turbulent flow)

Drag effects

Sinking & swimming

Detection of food particles (zooplankton)
Vertical mixing



Scales <1 km
Turbulent energy and viscosity

e Turbulence: departure from smooth (laminar) flow

* Energy cascade: transfer of energy from larger scales of
motion to smaller ones

— does not change total energy in turbulence, nor does it
convert the kinetic energy of the turbulent motion to
another form of energy

* When turbulent eddies become small enough, velocity
gradients across eddy become large, shear is great and

molecular viscosity acts to resist and smooth out the
gradients in velocity

— energy in turbulence is converted to heat and dissipated
— Molecular viscosity: internal resistance of water

— Kolmogorov length scale: scale at which viscosity
counteracts turbulence (=size of smallest turbulent eddy)



Scales 10-100’s of km (mesoscale)

Account for much of variability in the ocean
Equivalent to ‘weather’

— River plumes

— Coastal upwelling regions

— Mesoscale eddies and meanders

— Coastal fronts

— Tides, tidal mixing, internal waves

Rossby radius — a length scale

Rossby number — indicator of importance of Earth’s rotation
for the process being studied

Scales > 1000’s of km

— Ocean basin circulation: major currents, gyres, deep ocean
circulation



Scales 10-100’s of km
Biological effects of river plumes

* Direct effects of materials carried by the river on
biological production

* Entrainment (and potentially upwelling of
nutrient-rich water), which may enhance primary
and secondary production

* Enhancement of the stability of the water
column, which may enhance PP in spring, but
depress PP due to suppression of vertical mixing



Low-Nitrate wave effects Fe and Si ambient flow
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Coastal upwelling regions

Upwelling is wind-driven

Ekman transport (= Ekman drift) - net water movement 90°
to the right in NH;

Depth of Ekman layer depends on wind speed and latitude:
— D= 4.3 W/ (sin 0)%2
How do we calculate Ekman transport (M¢)?
— Mg =-1/f
* T =wind stress at the surface (e.g. 0.1 N m>)

* f=Coriolis parameter(varies by latitude)

 f=2Qsin 0, where Q) is the earth’s rotational velocity and 0O is the
latitude (at 45°N, ~10% s1)

— M =1000 kg m™* stto the right (NH)
Along-shore currents generated due to a resulting
horizontal pressure gradient



* Density and pressure
gradients caused by
offshore Ekman
transport (to the right)
—> pressure gradient
toward coast

* Flow returns toward
shore, but is deflected
due to Coriolis,
resulting in
equatorward, along-
shore current (surface-
intensified jet)

D = distance of front from
shore (~10-25 km)

R, = width of the region
where the interface
between upper and lower
layers rises to the surface =
Rossby internal
deformation scale (=
internal Rossby radius)

A) Vertical section across an upwelling region
4

B) Plan view || ==
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fis Coriolis parameter

G is reduced gravity: g’ = Ap/p g
H is depth of upper layer
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Eddies and meanders

Gulf Stream
Dynamics

Often formed from instabilities




Anticyclonic and cyclonic eddies

Plan view




Mesoscale eddies

* Rotating vortices between 10-250 km in diameter
* Clockwise (anti-cyclonic) or counter-clockwise (cyclonic)

anticyclonic cyclonic

N I\

“Downwelling” “Upwelling”



Anticyclonic circulation

Flow over topography



Cyclonic circulation




Influence of mesoscale eddies on oceanic primary production:

Nutrient supply
v Ay
<

L Y 2\ (Cyclonic)

Shoaling isopycnals:
Nutrient injection

100% I, stimulates

phytoplankton growth

Euphotic zone

1% I,

Deepening isopycnals:

Classic view No ecosystem response |  adapted from McGillicuddy
et al., 1998

(Anticyclonic)



Radar altimetry reveals sea
surface height anomalies that
are associated with eddies

Colorado Center for
Astrodynamics Research,
CCAR, UC Boulder

Real-Time Mesoscale Altimetry - Mar 28, 2005
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High chl a observed at the center of an
anticyclonic eddy

00G414E_qc 23:30 UTC

0.03

There are 2 reasons why
this might occur;

_Haida-2000 e i N
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.,;; ‘*"5} {
i“l?.\

But first, we will cover
the basics of anticyclonic
mesoscale eddy
features.

SeaWiFS images courtesy of J.F.R. Gower, 10S



Haida Eddies

Anticyclonic eddies
Formed off southern tip
of Queen Charlotte
Islands each winter

Source of coastal water
— Warm and fresh
Long-lived (> 1 year)
Large (150 — 300 km in
diameter)
Anecdotal evidence of
high productivity around
eddies (squid,

marine mammals, etc.)

Historical Mesoscale Altimetry - Jun 14, 2000
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In this example, the eddy is warm and fresh compared to surroundings



Structure of an AC eddy : Nitrate and sigma-6

June 2000
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Changes in phytoplankton assemblage occur over time at
eddy centre
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Distribution of chl a: surface

003414E_qc 2330 UTC
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SeaWiFS images courtesy of J.F.R. Gower, 10S



Haida Eddies and vertical distribution of chl a
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Eddy coalescence (vortex-vortex interactions)

Historical Mesoscale Altimetry - Jun 6, 2001
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Chl a contours
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Structure of an AC eddy : Nitrate and sigma-6

June 2000
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Influence of coalescence on phytoplankton
assemblages:

-benthic organisms

-Increased abundance of cryptomonads
-mixture of oceanic and coastal species

V' 11.9mm x4 50k SE(M) 4/2902

Coastal/benthic taxa

-Vexallifera (amoeba)

-Fossula arctica (ice margin diatom)
-nematodes (benthic worm)
-Aulacoseira granulata

(fresh water diatom)

{

‘Oceanic” species
-Nitzschia cylindriformis

-Emiliania huxleyi




Advection
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Atmospheric flux & deposition of Fe
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Integrated pigments
Out Edge Centre
Chl C1 +C2
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Months since Feb. 2000 Months since Feb. 2000 Months since Feb. 2000

Chl c,: prasinophytes Time . o
Chl c,: cryptomonads, dinoflagellates, Also: enhanced blogenlc”5|l|ca
E. huxleyi, chrysophytes No effect seen off Hawaii

Chl c,: haptophytes, pelagophytes (Johnson et al.)



S uction

Horizontal adp\!ection

=1 — — - —

___— Vortex-vortex

interactions -
Wl
oscillations

-Interleaving at
edges
-Internal waves

isopycnal
transport




Why might anticyclonic eddies be more
productive than their surroundings?

 Enhanced buoyancy early in the season
promotes earlier blooming of phytoplankton

* |[sopycnal rebound provides a mechanism for
the injection of nutrients into the upper mixed
layer



