Bacteria and Archaea in the Marine Environment

EBS 566

Reading

- Chapter 5, Miller
- Discussion paper:
	- Martens-Habbena et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature (2009) vol. 461 (7266) pp. 976-979

A Microbial World

- "The most outstanding feature of life's history is that through 3.5 billion years this has remained, really, a bacterial [microbial] planet. Most creatures are what they've always been: They're bacteria [and archaea] and they rule the world. And we need to be nice to them."
	- From: "Stephen Jay Gould" (Interview by Michael Krasny). Mother Jones (Jan.-Feb. 1997): 60-63. ©1997
- See also the essay "Planet of the Bacteria"
	- http://www.stephenjaygould.org/library/gould_bacteria.html

What are microbes?

- Too small to perceive individually – Microscopy is central
- Often single cells
- Bacteria
- Archaea
- Small Eukarya
- For this lecture we'll include viruses, which are not cells, but are part of the microbial community

Oscillatoria (a cyanobacterium) $8 \times 50 \ \mu m$

Bacteria Size (small!)

- **Typically** $0.5 2 \mu m$
- $-$ *E. coli* volume is \sim 1 µm³
- **Pelagic marine bacteria** *in situ* **~ 0.03 - 0.07 !m3**
- **Giant: Surgeonfish symbiont** *Epulopiscium fishelsoni***; 600 !m rod**
- **Many small ones can enlarge**

Consequences of being so small:

- **Large surface area to volume ratio**
- **Limits space for DNA, ribosomes, etc.**

A drop of seawater

• By Farooq Azam, Professor, Scripps Institution of Oceanography

A drop of seawater from Scripps pier, dark field microscopy (100x magnification)

A drop of seawater enriched with particles, dark field microscopy (100x magnification)

Seawater bacteria with a cell of the red tide dinoflagellate *Lingulodinium polyedrum*

Seawater bacteria near a piece of detritus, dark field microscopy (100x magnification)

Vibrio cholerae culture clustering around a dead dinoflagellate

What is the ocean?

• What are the properties that shape the evolution of marine microbes?

OCEAN AS A MICROBIAL HABITAT

Effect of temperature on growth

- Skewed growth rate vs. temp curve very similar to enzyme activity curves
- Temperature curve affected by growth medium/conditions

Temperature terminology

Figure 6-17 Brock Biology of Microorganisms 11/e 2006 Pearson Prentice Hall, Inc.

Fig. 2.15 An idealized profile of seawater temperature as a function of depth.

Temperature as a Variable

http://www.osdpd.noaa.gov/PSB/EPS/SST/data/FS_km5000.gif

Temperature

• Most marine microbes are adapted to lower temperatures than microbiologists are used to

Light as a variable

http://oceanexplorer.noaa.gov

F. Azam

Light

- Critical variable for phototrophs
- Low and high light level adaptations (e.g. *Synechococcus* and *Prochlorococcus* ecotypes)
- UV damage potential in upper layers
- DOM transformation by UV-- indirect effect on bacterial growth

Pressure as a Variable

Piezophiles

Open University. Seawater: Its composition, Properties and Behavior. 1991.

F. Azam

Pressure

- 1 atm/10 m depth
- Most ocean volume below 1000 m
- Adaptations for piezophily (enzyme expression)
- Challenge for surface bacteria sinking w/particlesimplications for OM decomposition
- Challenge for bacteria rising with light particles

From: *Marine Biology: Function, Biodiversity, Ecology* (2nd Ed., 2001) by Jeffrey S. Levinton

Surface seawater salinity

www.windows.ucar.edu

F. Azam

Water activity/Salt

- Cytoplasmic water activity must be maintained below that of that of the environment to promote osmotic influx of water to provide turgor pressure
- In low water activity environments, biologically compatible intracellular solutes must be imported or

Salinity

- **Narrow range in ocean; broad range in estuaries**
- **Na+ requirement in marine bacteria ("mild" halophiles)**
- **To grow in low water activity environments: obtain water by pumping ions in, or synthesize/concentrate an organic solute (non-inhibitory--compatible solutes; e.g. glycine betaine, glutamate, trehalose)**
- **Capacity to concentrate compatible solutes is genetically determined (and leads to adaptations to different salinity ranges)**
- **Survival of** *E. coli* **and** *V. cholerae* **in SW: Human health interest**

F. Azam

- pH
- Most microbes have a pH growth range of 2-3 units
- Generally, cytoplasm is circumneutral
	- Exceptions exist 4.5-9
- Seawater is near pH 8
	- Fairly constant
	- Microhabitats with lower pH common
- Energy is required to maintain cytoplasmic pH

Figure 6-22 Brock Biology of Microorganisms 11/e
© 2006 Pearson Prentice Hall, Inc.

Oxygen as a Variable

O2 is poorly soluble in water, affected by temperature

- **I. S Cal**
- **II. E South Atlantic**
- **III. Gulf Stream**

Open University. Seawater: Its composition, Properties and Behavior. 1991. F. Azam

Oxygen as a Variable

- Absolute requirement only by **aerobes**
- **Microaerophiles** tolerate low levels of $O₂$
- **Facultative aerobes** are quite common; can grow under aerobic or anaerobic conditions
- **Anaerobes**: Strict (killed) or aerotolerant (can detoxify)
- Most ocean water column is oxygenated, although sub-saturated (esp. E. Tropical Pacific, N. Arabian Sea) but significant anoxic env. (Black Sea); sediments and suspended/sinking particles, guts of animals, etc. may be anoxic.

Inorganic Nutrient Profiles

Open University. Seawater: Its composition, Properties and Behavior. 1991. Martin et al. 1989 Deep Sea Research 36:649-680

F. Azam

Microbial Habitats

Scale of Microbial **Environments**

- Macroenvironments
- Microenvironments
- Gradients of environmental variables
- The importance of integrating across scales

F. Azam

<1977: Bacteria considered unimportant in marine ecosystems

Low plate count- Typical cfu= 10^3 ml⁻¹

F. Azam

< 1 microliter of seawater under epifluorescence microscope (1000x)

Bacteria & viruses Image from Noble lab

Protozoa Image from Suzuki lab

!**We had missed >90%biomass, metabolism and biodiversity** F. Azam

The Age of Discovery

- **1977 Bacteria 106 ml -1 (103 x cfu)**
- **'79-'80 High bacterial growth & C demand (dynamic populations)**
- •**'84 Protozoa (103 ml -1) major predators on bacteria**
- •**'79-'90 Viruses abundant (107 ml -1) & major predators on bacteria**
- •**'79** *Synechococcus* **103 - 105 ml -1**
- •**'88** *Prochlorococcus* **104 - 105 ml -1**
- •**'92-'93 Widespread Archaea throughout the oceans (104 - 105 ml -1)**
- •**'90s-today Rise of molecular ecology; marine genomics & proteomics; document diversity; culture the "unculturable"**

F. Azam

- Combined with "-troph" the roots are used alone or in combination Examples:
	- photolithoautotroph (photoautotroph)
	- photolithoheterotroph (photoheterotroph)
	- photoorganoheterotroph (photoorganotroph)
	- chemolithoautotroph (chemoautotroph) chemolithoheterotroph
	- chemoorganoheterotroph (or chemoheterotrophs or heterotroph)
	- Missing:
		- photoorganoautotroph
		- chemoorganoautotroph
	- Mostly will use the terms without specifying C source:
		- photolithotroph photoorganotroph
		- chemolithotroph
		- chemoorganotroph
- **• these terms are useful because they focus on chemical activities of organisms rather than classification based on species and genus**
- obligate vs facultative vs mixotrophic
- aerobic vs facultative anaerobe vs anaerobe
- electron acceptors

Fig. 15.1 in *Brock Biology of Microorganisms* (9th ed.)

Metabolic

Diversity

Overview of Cell Metabolism

Major players

- Bacteria
	- Cyanobacteria ex. *Synechococcus*, *Prochlorococcus*: oxygenic photoautotrophs
	- Alpha proteobacteria, ex. *Candidatus* Pelagibacter ubique: chemoorganotrophs
- Archaea
	- Mesophilic marine crenarchaeota, ex. *Nitrosopumilis maritima*: chemolithoautotrophs*?*

Pelagibacter ubique

- Chemoorganoheterotroph
- Highly abundant (25%), pelagic
- Adapted to oligotrophy
- Slow growing, never reach high cell density, grow only in seawater
- Non-motile
- Auxotrophic for glycine and serine
- Requires vitamins and reduced sulfur (DMSP)
- Lacks conventional stationary phase
- Makes proteorhodopsin

Nicastro et al.. Microsc Microanal (2006) vol. 12(Supp 2) p. 180

100 nm

Ca. P. ubique genome is tiny

Heterotrophic metabolism

Organic matter

C, N, new cells, maintenance and repair

generation of protonmotive force, CO2 excretion

Bacteriorhodopsin (similar to proteorhodopsin)

- Light-driven proton pump
	- Light drives the retinal chromophore from relaxed trans to energetic cis form (like loading a spring)
	- Energy is released so that a proton is transported out of the cell
- Used for:
	- ATP synthesis
	- Transport
- Allows survival when no organic energy sources are available
- Unlike photosynthesis, does *not* provide reducing power for C fixation or biosynthesis

Proteorhodopsin

- Cells can be more efficient under C limited conditions, less loss to respiration
- Survive starvation

PNAS

Marine archaea rely mainly on autotrophic metabolism. They comprise up to 40% of cells in deep ocean water

PNAS 2006;103:6413-6414

@2006 by National Academy of Scienc

Nitrosopumilis maritimus

- Only cultivated member of the marine crenarchaeota
- Isolated from aquarium gravel
- Chemolithoautotroph: ammonia oxidation

Konneke et al. Nature (2005) vol. 437 pp. 543-546

Fig. 15.1 in *Brock Biology of Microorganisms* (9th ed.)

Predation on bacteria

Flagellates

- 2-5 µm in diameter
- abundance: 10^3 mL⁻¹
- graze \sim 50% of bacterial production

Viruses

- 20-250 nm in diameter
- $-10^{7}-10^{8}$ mL⁻¹
- species-specific predators
- $-$ kill \sim 50% of bacterial population
- "futile cycle" of C flow

Metazoan

- specialized mucus-net feeders

- ingestion of bacteria attached to

Heterotrophic bacteria

- Recognized to play a key role in the carbon cycle
- Consume dissolved organic matter (DOM) converting it to particulate organic matter (cells, POM) and CO2 (respiration)
- Also convert POM to DOM, bacterial cells and CO2

Microbes in marine ecosystems: Integrative

- **-> C flux into bacteria a major variable pathway; affects biogeochem variability** • **How do we integrate bacterial processes into ecosystem models?**
- F. Azam

Particulate organic matter

- \bullet Sources of particles (organic)
	-
	- Ultimately derived from phytoplankton (mainly)
- Product of trophic interactions (ingestion and egestion), $\overline{}$ cell lysis, aggregation (marine snow), enzymes, bacterial colonization, turbulence
- Measured by CHN analysis of particles on GF/F filters
	- Usually 10x less than DOC, but highly variable
	- Often 1/2 POC is living material (upper mixed layer)
- POC can be sinking, suspended or rising \bullet
	- Sinking POC shows exponential decrease with depth
	- $-$ C/N & C/P of sinking particles increase with depth
- Exchange between POC and DOC \bullet
	- $-$ DOC \rightarrow POC transition by biotic (bacteria production) and abiotic processes (colloid aggregation)
	- $POC \rightarrow DOC$ transition by biotic (hydrolytic enzymes) \sim and abiotic processes (chemical dissolution)

Seasonal and annual variability of DOC in the water column: Sargasso Sea

Carlson web page

F. Azam

A unifying context for bacteria-OM interactions

Verdugo et al., Mar. Chem.

F. Azam

Micro-scale heterogeneity and !-environment structure Context for bacterial structuring of ecosystem

Azam, F. 1998 Science 280:694-696 • Implications for diversity, C cycling, nutrient-growth relations & microbial ecology zam

Transparent Exopolymer Particles (TEP)

• \sim 10³ ml⁻¹: 2-100s μ m; many colonized

Alldredge *et al.* 1993. Deep-Sea Res.40: 1131-1140.

F. Azam

nm-!m scale bacteria-phytoplankton interactions have ecosystem scale C cycle consequences

- " **Bacteria interact w/ phytoplankton as part of OM continuum**
- " **Create N, P, Fe hot-spots sustaining rapid primary production**
- " **Enzymes reduce diatom 'stickiness' , inhibit aggregation and sinking**
- " **DMSP--> DMS kinetics enhanced**

Nanometer scale action of bacteria regulates global ocean Si (and C) cycles

20 µ**m**

- " **Colonizer proteases hydrolyse protective matrix, cause rapid silica dissolution**
- " **Variables: Species; colonization and** *hydrolase intensity***; temperature**
- " **!-scale enzyme action affects Ocean basin Si and C cycles**

Bidle & Azam.1999. Nature 397: 508-512 Bidle, Manganelli and Azam. 2002. Science 298:1980-1983 F. Azam

Microscale biochemistry structures ocean ecosystems: bacterial carbon cycling on marine snow

- " **Leaves DOM plume in its wake**
- " **High cell density 107-1010 ml -1**
- " **Nutrients, energy (& pollutants?) retained in upper ocean**
- " **Enzymatic control of energy flux to the deep sea**
- " **Rapid hydrolysis but low uptake**

Marine bacteriophages

- •Most common predator in the ocean \sim 10⁷ phage ml-1
- Major players in global C cycling - increase respiration
	- decrease primary production
- Transduction and lysogenic conversion - increase genetic malleability
- Increase microbial diversity
- "kill the winner"

Article discussion

Phases of growth in batch culture

- lag phase (adaptation to new conditions)
- logarithmic phase (maximal, characteristic rate for the particular conditions = balanced growth)
- stationary phase (cessation of growth upon exhaustion of nutrients or accumulation of inhibitory end products, adaptation for dispersal)

Growth terms

- All of these are based on balanced growth (all nutrients in excess)
- growth rate, cells/time $= dN/dt = kN$,
	- k (also called μ)=growth rate constant, in units of time-1 , (usually h). in many studies of growth rate, $k(\mu)$ is measured, then plotted as a function of something like temperature
		- N is the concentration of cells (#/volume, population density)
- generation time = doubling time = $g = ln2/k$ = 0.693/k
	- the inverse of doubling time, 1/g often used, this gives doublings per hour (this is called μ in Neihardt, and ν in Brock,)

Growth data

- $\log_{10}N \log_{10}N_0 = k(t-t_0)/2.303$,
	- consequently plotting the log_{10} of cell number or mass vs time gives a straight line with slope of k/2.303,
	- semilog plots are most common for study of growth of cells in batch culture
- linear (arithmetic) growth will occur if growth is limited by something provided at a constant rate, such as oxygen

Growth Yield

- growth yield, Y is a measure of efficiency
	- $X X_0 = YC$, C is the initial concentration of the limiting nutrient (X=cell mass)

Nutrient limitation

- Growth rate as a function of nutrient concentration
	- $k = k_{max} * C/(Ks + C)$
	- Michaelis-Menten type kinetics,
		- Ks is analogous to the MM constant Km,
		- for glucose in E. coli Ks is umolar, much less than normally used in culture media.
		- kmax is the maximum growth rate under the particular conditions.

Properties of Nitrogen

- Nitrogen is a major nutrient required by all cells
- Redfield ratio N:P=16:1
- Common species and oxidation states (cast of characters)
	- $-$ NH₄⁺, -3: This is the oxidation state in proteins. NH₄- is the source of N in amino acid biosynthesis, ammonium
	- $-$ NH₂OH, -1, hydroxylamine
	- $-$ N₂, 0, Major form in the atmosphere, past and present, very unreactive species, nitrogen gas
	- $-$ N₂O, +1, gaseous, nitrous oxide
	- NO , +2, gaseous, nitric oxide
	- $-$ NO₂⁻, +3, nitrite
	- $-$ NO₃⁻, +5, nitrate

The modern N cycle

- Yellow is oxidation
- Red is reduction
- White is no redox change
- The full range of species is present

The History of Nitrogen

- Until the rise of $O₂$ due to oxygenic photosynthesis about 1 bya, N_2 and $\mathsf{NH}_4{}^+$ were the dominant species
- NH_4 ⁺ relatively abundant from geological sources
- Consistent with high levels of N in organisms
- Consistent with NH_4 ⁺ as fundamental source of N in cells - simplest assimilation
- Thus during most of biological evolution, N was not a problem

The ancient N cycle in an anoxic world

- No redox cycling
- N2 fixation not needed (?)

The History of Nitrogen, II

- The oxygenation of the atmosphere precipitated a nitrogen crisis
- Free O_2 would react with ammonia to produce N₂ and various nitrogen oxides, reducing N availability and creating selective pressure for N_2 fixation
- This situation also presents an opportunity for lithoautotrophs that can grow using reduced N as an electron donor and $O₂$ as an electron acceptor

Processes evolving in response to NH_4 ⁺ oxidation after the appearance of oxygen

Processes evolving in response to NH_4 ⁺ oxidation after the appearance of oxygen

N cycle in the early aerobic world

- Nitrogen fixation compensates for oxidative loss of NH_4^+
- **Lithoautotrophic** oxidation of NH_{4}^+ by oxygen occupies a new niche

Conventional nitrification: old but not ancient?

- No organism known to take NH $_4^{\mathrm{+}}$ all the way to NO_{3}^{-}
- NH_4^+ ->NO₂ – Bacteria (*Nitrosomonas*), archaea
- $NO_2^- \rightarrow NO_3^-$ – Bacteria (*Nitrobacter*)
- Both require oxygen
- Both support autotrophy

Nitrification, a lousy way to make a living

"Data calculated from values in Appendix 1; values for Fe²⁺ are for pH 2, and others are for pH 7. At pH 7 the Fe³⁺/Fe²⁺ couple is about +0.2 V. ^{*F*} Except for phosphite, all reactions are shown coupled to O_2 as electron acceptor. The only known phosphite oxidizer couples to SO₄² as electron acceptor

'Ammonium can also be oxidized with NO₂⁻ as electron acceptor by anammox organisms (see Section 17.12).

Table 17-1 Brock Biology of Microorganisms 11/e

2006 Pearson Prentice Hall, Inc.

Nitroso-, NH_4^+ -> NO_2^-

- Two enzymes involved:
	- Ammonia monooxygenase, a membrane protein
	- Hydoxylamine oxidase, a periplasmic enzyme

