Bacteria and Archaea in the Marine Environment

EBS 566

Reading

- Chapter 5, Miller
- Discussion paper:
 - Martens-Habbena et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature (2009) vol. 461 (7266) pp. 976-979

A Microbial World

- "The most outstanding feature of life's history is that through 3.5 billion years this has remained, really, a bacterial [microbial] planet. Most creatures are what they've always been: They're bacteria [and archaea] and they rule the world. And we need to be nice to them."
 - From: "Stephen Jay Gould" (Interview by Michael Krasny). Mother Jones (Jan.-Feb. 1997): 60-63. ©1997
- See also the essay "Planet of the Bacteria"
 - http://www.stephenjaygould.org/library/gould_bacteria.html

What are microbes?

- Too small to perceive individually

 Microscopy is central
- Often single cells
- Bacteria
- Archaea
- Small Eukarya
- For this lecture we'll include viruses, which are not cells, but are part of the microbial community

Oscillatoria (a cyanobacterium) $8\times50~\mu m$

Bacteria Size (small!)

- Bacillus megaterium $1.5 \times 4 \ \mu m$ Escherichia coli $1 \times 3 \ \mu m$ Streptococcus pneumoniae $0.8 \ \mu m$ diameter Marine bacteria $0.2 \ \times 0.6 \ \mu m$
- Typically 0.5 2 μm
- E. coli volume is ~ 1 μm³
- Pelagic marine bacteria in situ ~ 0.03 0.07 μm³
- Giant: Surgeonfish symbiont Epulopiscium fishelsoni; 600 µm rod
- Many small ones can enlarge

Consequences of being so small:

- Large surface area to volume ratio
- Limits space for DNA, ribosomes, etc.

A drop of seawater

• By Farooq Azam, Professor, Scripps Institution of Oceanography

A drop of seawater from Scripps pier, dark field microscopy (100x magnification)

A drop of seawater enriched with particles, dark field microscopy (100x magnification)

Seawater bacteria with a cell of the red tide dinoflagellate Lingulodinium polyedrum

Seawater bacteria near a piece of detritus, dark field microscopy (100x magnification)

Vibrio cholerae culture clustering around a dead dinoflagellate

What is the ocean?

• What are the properties that shape the evolution of marine microbes?

OCEAN AS A MICROBIAL HABITAT

Effect of temperature on growth

- Skewed growth rate vs. temp curve very similar to enzyme activity curves
- Temperature curve affected by growth medium/conditions

Temperature terminology

Figure 6-17 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

Temperature as a Variable

http://www.osdpd.noaa.gov/PSB/EPS/SST/data/FS_km5000.gif

Temperature

 Most marine microbes are adapted to lower temperatures than microbiologists are used to

Light as a variable

http://oceanexplorer.noaa.gov

F. Azam

Light

- Critical variable for phototrophs
- Low and high light level adaptations (e.g. *Synechococcus* and *Prochlorococcus* ecotypes)
- UV damage potential in upper layers
- DOM transformation by UV-- indirect effect on bacterial growth

Pressure as a Variable

Piezophiles

Open University. Seawater: Its composition, Properties and Behavior. 1991.

F. Azam

Pressure

- 1 atm/10 m depth
- Most ocean volume below 1000 m
- Adaptations for piezophily (enzyme expression)
- Challenge for surface bacteria sinking w/particlesimplications for OM decomposition
- Challenge for bacteria rising with light particles

Major ions – Seawater vs.				
	River Wate	er		
lon	Average Seawater (mM)	Average River (mM)		
C⊢	545.0	0.16		
Na⁺	468.0	0.23		
Mg ²⁺	53.2	0.15		
SO42-	28.2	0.86		
Ca ²⁺	10.2	0.33		
K+	10.2	0.03		

From: Marine Biology: Function, Biodiversity, Ecology (2nd Ed., 2001) by Jeffrey S. Levinton

Surface seawater salinity

www.windows.ucar.edu

F. Azam

Water activity/Salt

- Cytoplasmic water activity must be maintained below that of that of the environment to promote osmotic influx of water to provide turgor pressure
- In low water activity environments, biologically compatible intracellular solutes must be imported or synthesized

Salinity

- Narrow range in ocean; broad range in estuaries
- Na⁺ requirement in marine bacteria ("mild" halophiles)
- To grow in low water activity environments: obtain water by pumping ions in, or synthesize/concentrate an organic solute (non-inhibitory--compatible solutes; e.g. glycine betaine, glutamate, trehalose)
- Capacity to concentrate compatible solutes is genetically determined (and leads to adaptations to different salinity ranges)
- Survival of *E. coli* and *V. cholerae* in SW: Human health interest

F. Azam

- Most microbes have a pH growth range of 2-3 units
- Generally, cytoplasm is circumneutral
 - Exceptions exist 4.5-9
- Seawater is near pH 8
 - Fairly constant
 - Microhabitats with lower pH common
- Energy is required to maintain cytoplasmic pH

Figure 6-22 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

Oxygen as a Variable

O2 is poorly soluble in water, affected by temperature

- I. S Cal
- II. E South Atlantic
- III. Gulf Stream

F. Azam Open University. Seawater: Its composition, Properties and Behavior. 1991.

Oxygen as a Variable

- · Absolute requirement only by aerobes
- Microaerophiles tolerate low levels of O₂
- Facultative aerobes are quite common; can grow under aerobic or anaerobic conditions
- Anaerobes: Strict (killed) or aerotolerant (can detoxify)
- Most ocean water column is oxygenated, although sub-saturated (esp. E. Tropical Pacific, N. Arabian Sea) but significant anoxic env. (Black Sea); sediments and suspended/sinking particles, guts of animals, etc. may be anoxic.

Open University. Seawater: Its composition, Properties and Behavior. 1991. Martin et al. 1989 Deep Sea Research 36:649-680

F. Azam

Microbial Habitats

F. Azam

Scale of Microbial Environments

- Macroenvironments
- Microenvironments
- Gradients of environmental variables
- The importance of integrating across scales

F. Azam

<1977: Bacteria considered unimportant in marine ecosystems

Low plate count- Typical cfu= 10^3 ml⁻¹ F. Azam

< 1 microliter of seawater under epifluorescence microscope (1000x)

Bacteria & viruses Image from Noble lab

Protozoa Image from Suzuki lab

We had missed >90% biomass, metabolism and biodiversity F. Azam

The Age of Discovery

- 1977 Bacteria 10⁶ ml⁻¹ (10³ x cfu)
- '79-'80 High bacterial growth & C demand (dynamic populations)
- •'84 Protozoa (10³ ml⁻¹) major predators on bacteria
- •'79-'90 Viruses abundant (10⁷ ml⁻¹) & major predators on bacteria
- •**'79** Synechococcus 10³ 10⁵ ml⁻¹
- •'88 *Prochlorococcus* 10⁴ 10⁵ ml⁻¹
- •'92-'93 Widespread Archaea throughout the oceans (10⁴ · 10⁵ ml⁻¹)
- •'90s-today Rise of molecular ecology; marine genomics & proteomics; document diversity; culture the "unculturable"

F. Azam

Energy source	electron donor	carbon source		
photo- (light)	litho- (inorganic)	auto- (CO ₂)		
chemo- (organic or inorganic chemicals)	organo- (organic)	hetero- (reduced organic)		

- Combined with "-troph" the roots are used alone or in combination Examples:
 - photolithoautotroph (photoautotroph)
 - photolithoheterotroph (photoheterotroph)
 - photoorganoheterotroph (photoorganotroph)
 - chemolithoautotroph (chemoautotroph)
 - chemolithoheterotroph
 - chemoorganoheterotroph (or chemoheterotrophs or heterotroph)

Missing:

- photoorganoautotroph
- chemoorganoautotroph
- Mostly will use the terms without specifying C source: photolithotroph
 - photoorganotroph
 - chemolithotroph
 - chemoorganotroph
- these terms are useful because they focus on chemical activities of organisms rather than classification based on species and genus
- obligate vs facultative vs mixotrophic
- · aerobic vs facultative anaerobe vs anaerobe
- · electron acceptors

Fig. 15.1 in Brock Biology of Microorganisms (9th ed.)

Metabolic

Diversity

Туре	Electron Donor	Electron Acceptor	Carbon Source	Examples
Photolithotrophy	H ₂ O	CO ₂	CO ₂	plants, cyanobacteria (oxygenic photosynthesis)
	H_2S	CO ₂	CO_2	purple sulfur bacteria (Chromatiaceae)
				green sulfur bacteria (Chlorobiaceae)
Photoorganotrophy	organics	organics	organics	purple nonsulfur bacteria (Rhodospirillaceae)
Chemoorganotrophy	organics	O ₂	organics	aerobic heterotrophs (pseudomonads)
	organics	NO3 ⁻	organics	denitrifiers (pseudomonads)
	organics	SO4=	organics	sulfate reducers (Desulfovibrio)
	organics	Fe ³⁺ , MnO ₂	organics	iron and manganese reducers
	organics	organics	organics	fermenters (Clostridia)
Chemolithotrophy	H_2	O ₂	CO_2	hydrogen-oxidizing bacteria
	H ₂ S, S ⁰ , SSO ₃ ⁻	O ₂	CO ₂	sulfur oxidizing bacteria (thiobacilli)
	H_2S	NO3 ⁻	CO ₂	anaerobic sulfur oxidizing bacteria
				(Thiobacillus denitrificans)
	Fe ²⁺	O ₂	CO ₂	Iron oxidizing bacteria (Th. ferrooxidans)
	NH3	O ₂	CO ₂	Ammonia oxidizing bacteria (Nitrifiers) (Nitrosomonas)
	NO ₂ -	O ₂	CO ₂	Nitrite oxidizing bacteria (Nitrifiers) (Nitrobacter)
	CH4, CH3OH	O ₂	CO ₂ , HCOH	Methanotrophs and methylotrophs
	H ₂	SO ₄ =	CO_2	Sulfate reducing bacteria (some)
	H_2	CO_2	CO_2	Methanogens
	H ₂	CO ₂	CO ₂	Acetogens

Overview of Cell Metabolism

Major players

- Bacteria
 - Cyanobacteria ex. Synechococcus, Prochlorococcus: oxygenic photoautotrophs
 - Alpha proteobacteria, ex. Candidatus
 Pelagibacter ubique: chemoorganotrophs
- Archaea
 - Mesophilic marine crenarchaeota, ex. Nitrosopumilis maritima: chemolithoautotrophs?

Pelagibacter ubique

- Chemoorganoheterotroph
- Highly abundant (25%), pelagic
- · Adapted to oligotrophy
- Slow growing, never reach high cell density, grow only in seawater
- Non-motile
- Auxotrophic for glycine and serine
- Requires vitamins and reduced sulfur (DMSP)
- · Lacks conventional stationary phase
- Makes proteorhodopsin

Nicastro et al.. Microsc Microanal (2006) vol. 12(Supp 2) p. 180

100 nm

Ca. P. ubique genome is tiny

Heterotrophic metabolism

Organic matter

NH4+, excretion

C, N, new cells, maintenance and repair

C, respiration, generation of protonmotive force, CO2 excretion

Bacteriorhodopsin (similar to proteorhodopsin)

- Light-driven proton pump
 - Light drives the retinal chromophore from relaxed trans to energetic cis form (like loading a spring)
 - Energy is released so that a proton is transported out of the cell
- Used for:
 - ATP synthesis
 - Transport
- Allows survival when no organic energy sources are available
- Unlike photosynthesis, does not provide reducing power for C fixation or biosynthesis

Proteorhodopsin

- Cells can be more efficient under C limited conditions, less loss to respiration
- Survive starvation

PNAS

Marine archaea rely mainly on autotrophic metabolism. They comprise up to 40% of cells in deep ocean water

PNAS 2006;103:6413-6414

©2006 by National Academy of Sciences

Nitrosopumilis maritimus

- Only cultivated member of the marine crenarchaeota
- Isolated from aquarium gravel
- Chemolithoautotroph: ammonia oxidation

Predation on bacteria

Flagellates

- 2-5 μm in diameter
- abundance: 10³ mL⁻¹
- graze $\sim 50\%$ of bacterial production

Viruses

- 20-250 nm in diameter
- 10⁷-10⁸ mL⁻¹
- species-specific predators
- kill ~ 50% of bacterial population
- "futile cycle" of C flow

Metazoan

- specialized mucus-net feeders

- ingestion of bacteria attached to particles

Heterotrophic bacteria

- Recognized to play a key role in the carbon cycle
- Consume dissolved organic matter (DOM) converting it to particulate organic matter (cells, POM) and CO2 (respiration)
- Also convert POM to DOM, bacterial cells and CO2

Microbes in marine ecosystems: Integrative \/i____ Pollutants Radionuclides Pathogens hv C02 Sewage CH₄ (Grazing Chain) oplankton Fish DMS Zooplankton POM NPS Fe aggregation Protozoa packaging Bacteria Virus Advection Sinking (Microbial Loop) Mesopelagic Processes Benthos (incl. bacteria) Benthic flux

-> C flux into bacteria a major variable pathway; affects biogeochem variability
How do we integrate bacterial processes into ecosystem models?

F. Azam

Particulate organic matter

- Sources of particles (organic)
 - Ultimately derived from phytoplankton (mainly)
 - Product of trophic interactions (ingestion and egestion), cell lysis, aggregation (marine snow), enzymes, bacterial colonization, turbulence
- Measured by CHN analysis of particles on GF/F filters
 - Usually 10x less than DOC, but highly variable
 - Often 1/2 POC is living material (upper mixed layer)
- · POC can be sinking, suspended or rising
 - Sinking POC shows exponential decrease with depth
 - C/N & C/P of sinking particles increase with depth
- Exchange between POC and DOC
 - DOC → POC transition by biotic (bacteria production) and abiotic processes (colloid aggregation)
 - POC → DOC transition by biotic (hydrolytic enzymes) and abiotic processes (chemical dissolution)

Seasonal and annual variability of DOC in the water column: Sargasso Sea

Carlson web page

F. Azam

A unifying context for bacteria-OM interactions

Verdugo et al., Mar. Chem.

F. Azam

Micro-scale heterogeneity and µ-environment structure Context for bacterial structuring of ecosystem

Azam, F. 1998 Science 280:694-696 • Implications for diversity, C cycling, nutrient-growth relations & microbial ecology

F. Azam

Transparent Exopolymer Particles (TEP)

• ~ 10^3 ml^{-1} : 2-100s µm; many colonized

Alldredge et al. 1993. Deep-Sea Res.40: 1131-1140.

F. Azam

nm-µm scale bacteria-phytoplankton interactions have ecosystem scale C cycle consequences

- Bacteria interact w/ phytoplankton as part of OM continuum
- Create N, P, Fe hot-spots sustaining rapid primary production
- Enzymes reduce diatom 'stickiness', inhibit aggregation and sinking
- DMSP--> DMS kinetics enhanced

Nanometer scale action of bacteria regulates global ocean Si (and C) cycles

20 µm

- Colonizer proteases hydrolyse protective matrix, cause rapid silica dissolution
- Variables: Species; colonization and hydrolase intensity; temperature
- µ-scale enzyme action affects Ocean basin Si and C cycles

Bidle & Azam.1999. Nature 397: 508-512 Bidle, Manganelli and Azam. 2002. Science 298:1980-1983 F. Azam

Microscale biochemistry structures ocean ecosystems: bacterial carbon cycling on marine snow

- Leaves DOM plume in its wake
- High cell density 10⁷-10¹⁰ ml⁻¹
- Nutrients, energy (& pollutants?) retained in upper ocean
- Enzymatic control of energy flux to the deep sea
- Rapid hydrolysis but low uptake

Marine bacteriophages

- •Most common predator in the ocean ~10⁷ phage ml-1
- Major players in global C cycling
 increase respiration
 - decrease primary production
- Transduction and lysogenic conversion - increase genetic malleability
- Increase microbial diversity
- "kill the winner"

Article discussion

Phases of growth in batch culture

- lag phase (adaptation to new conditions)
- logarithmic phase (maximal, characteristic rate for the particular conditions = balanced growth)
- stationary phase (cessation of growth upon exhaustion of nutrients or accumulation of inhibitory end products, adaptation for dispersal)

Growth terms

- All of these are based on balanced growth (all nutrients in excess)
- growth rate, cells/time = dN/dt=kN,
 - k (also called μ)=growth rate constant, in units of time⁻¹, (usually h). in many studies of growth rate, k (μ) is measured, then plotted as a function of something like temperature
 - N is the concentration of cells (#/volume, population density)
- generation time = doubling time = g = ln2/k = 0.693/k
 - the inverse of doubling time, 1/g often used, this gives doublings per hour (this is called μ in Neihardt, and ν in Brock,)

Growth data

- $\log_{10}N \log_{10}N_0 = k(t-t_0)/2.303$,
 - consequently plotting the log₁₀ of cell number or mass vs time gives a straight line with slope of k/2.303,
 - semilog plots are most common for study of growth of cells in batch culture
- linear (arithmetic) growth will occur if growth is limited by something provided at a constant rate, such as oxygen

Growth Yield

- growth yield, Y is a measure of efficiency
 - X X₀ = YC, C is the initial concentration of the limiting nutrient (X=cell mass)

Nutrient limitation

- Growth rate as a function of nutrient concentration
 - $k = k_{max} * C/(Ks + C)$
 - Michaelis-Menten type kinetics,
 - Ks is analogous to the MM constant Km,
 - for glucose in E. coli Ks is µmolar, much less than normally used in culture media.
 - kmax is the maximum growth rate under the particular conditions.

Properties of Nitrogen

- · Nitrogen is a major nutrient required by all cells
- Redfield ratio N:P=16:1
- · Common species and oxidation states (cast of characters)
 - NH_4+, -3: This is the oxidation state in proteins. NH_4- is the source of N in amino acid biosynthesis, ammonium
 - NH₂OH, -1, hydroxylamine
 - N₂, 0, Major form in the atmosphere, past and present, very unreactive species, nitrogen gas
 - N₂O, +1, gaseous, nitrous oxide
 - NO , +2, gaseous, nitric oxide
 - NO2⁻, +3, nitrite
 - NO3⁻, +5, nitrate

The modern N cycle

- Yellow is oxidation
- Red is
 reduction
- White is no redox change
- The full range of species is present

The History of Nitrogen

- Until the rise of O₂ due to oxygenic photosynthesis about 1 bya, N₂ and NH₄⁺ were the dominant species
- NH₄⁺ relatively abundant from geological sources
- · Consistent with high levels of N in organisms
- Consistent with NH₄⁺ as fundamental source of N in cells simplest assimilation
- Thus during most of biological evolution, N was not a problem

The ancient N cycle in an anoxic world

- No redox
 cycling
- N2 fixation not needed (?)

The History of Nitrogen, II

- The oxygenation of the atmosphere precipitated a nitrogen crisis
- Free O₂ would react with ammonia to produce N₂ and various nitrogen oxides, reducing N availability and creating selective pressure for N₂ fixation
- This situation also presents an opportunity for lithoautotrophs that can grow using reduced N as an electron donor and O₂ as an electron acceptor

Processes evolving in response to NH_4^+ oxidation after the appearance of oxygen

Processes evolving in response to NH_4^+ oxidation after the appearance of oxygen

N cycle in the early aerobic world

- Nitrogen fixation compensates for oxidative loss of NH₄⁺
- Lithoautotrophic oxidation of NH₄⁺ by oxygen occupies a new niche

Conventional nitrification: old but not ancient?

- No organism known to take NH₄⁺ all the way to NO₃⁻
- NH₄+–>NO₂-– Bacteria (*Nitrosomonas*), archaea
- NO₂⁻ -> NO₃⁻
 Bacteria (*Nitrobacter*)
- Both require oxygen
- Both support autotrophy

Nitrification, a lousy way to make a living

Table 17.1	Energy yields from the oxidation of various inorganic electron donors ^a							
Electron donor	Reaction	Type of chemolithotroph	E ₀ ' of couple (V)	∆G ^{0′} (kJ/reaction)	Number of electrons	∆G ^{0'} (kJ/2e')		
Phosphite"	$4 \text{ HPO}_3^{2-} + \text{ SO}_4^{2-} + \text{ H}^+ \rightarrow 4 \text{ HPO}_4^{2-} + \text{ HS}^-$	Phosphite bacteria	-0.69	-91	2	-91		
Hydrogen	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	Hydrogen bacteria	-0.42	-237.2	2	-237.2		
Sulfide	$HS^- + H^+ + \frac{1}{2}O_2 \rightarrow S^0 + H_2O$	Sulfur bacteria	-0.27	-209.4	2	-209.4		
Sulfur	$S^0 + 1^1_2O_2 + H_2O \rightarrow SO_4^{2-} + 2H^+$	Sulfur bacteria	-0.20	-587.1	6	195.7		
Ammonium ⁴	$NH_4^+ + 1_2^1O_2 \rightarrow NO_2^- + 2H^+ + H_2O_2^-$	Nitrifying bacteria	+0.34	-274.7	6	-91.6		
Nitrite	$NO_2^- + \frac{1}{2}O_2 \rightarrow NO_3^-$	Nitrifying bacteria	+0.43	-74.1	2	-74.1		
Ferrous iron	Fe^{2+} + H^+ + $\frac{1}{4}O_2 \rightarrow Fe^{3+}$ + $\frac{1}{2}H_2O$	Iron bacteria	+0.77	-32.9	1	-65.8		

^a Data calculated from values in Appendix 1; values for $Fe^{2\pi}$ are for pH 2, and others are for pH 7. At pH 7 the $Fe^{3\mu}/Fe^{24}$ couple is about +0.2 V. ^b Except for phosphite, all reactions are shown coupled to O_2 as electron acceptor. The only known phosphite oxidizer couples to $SO_4^{2\pi}$ as electron acceptor.

"Ammonium can also be oxidized with NO2" as electron acceptor by anammox organisms (see Section 17.12).

Table 17-1 Brock Biology of Microorganisms 11/e

© 2006 Pearson Prentice Hall, Inc.

Nitroso-, $NH_4^+ \rightarrow NO_2^-$

- Two enzymes involved:
 - Ammonia monooxygenase, a membrane protein
 - Hydoxylamine oxidase, a periplasmic enzyme

