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Unstructured-grid models grounded on semi-implicit, finite-volume, Eulerian–Lagrangian algorithms, such as UnTRIM and
ELCIRC, have enjoyed considerable success recently in simulating 3D estuarine and coastal circulation. However, opportunities for
improving the accuracy of this type of models were identified during extensive simulations of a tightly coupled estuary–plume–shelf sys-
tem in the Columbia River system. Efforts to improve numerical accuracy resulted in SELFE, a new finite-element model for cross-scale
ocean modeling. SELFE retains key benefits, including computational efficiency of existing semi-implicit Eulerian–Lagrangian finite-vol-
ume models, but relaxes restrictions on grids, uses higher-order shape functions for elevation, and enables superior flexibility in repre-
senting the bathymetry. Better representation of the bathymetry is enabled by a novel, ‘‘localized” vertical grid that resembles
unstructured grids. At a particular horizontal location, SELFE uses either S coordinates or SZcoordinates, but the equations are con-
sistently solved in Z space. SELFE also performs well relative to volume conservation and spurious oscillations, two problems that pla-
gue some finite-element models. This paper introduces SELFE as an open-source code available for community use and enhancement.
The main focus here is on describing the formulation of the model and on showing results for a range of progressively demanding bench-
mark tests. While leaving details to separate publications, we also briefly illustrate the superior performance of SELFE over ELCIRC in
a field application to the Columbia River estuary and plume.
� 2007 Elsevier Ltd. All rights reserved.
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R1. Introduction

Numerical modeling of ocean circulation, at scales rang-
ing from estuaries to ocean basins, is a mature field. A
plethora of codes are available, many of which are open-
source. Most modern ocean circulation codes solve for
some form of the 3D Navier–Stokes equations, comple-
mented with conservation equations for water volume, salt
and heat. Common codes use either structured (POM
(Blumberg and Mellor, 1987); TRIM (Casulli and Cheng,
1992); ROMS (Shchepetkin and McWilliams, 2005);
NCOM (Barron et al., 2006)) or unstructured grids
(ADCIRC (Luettich et al., 1991); QUODDY (Lynch and
50

51

52

1463-5003/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ocemod.2007.11.005

* Corresponding author. Tel.: +1 503 748 1960; fax: +1 503 748 1273.
E-mail address: yinglong@stccmop.org (Y. Zhang).

Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
Werner, 1991); UnTRIM (Casulli and Walters, 2000);
ELCIRC (Zhang et al., 2004); SEOM (Iskandarani et al.,
2003); FVCOM (Chen et al., 2003)) and are typically based
on finite differences (POM, TRIM, ROMS, NCOM), finite
elements (SEOM, ADCIRC, QUODDY), or hybrid
approaches involving finite volumes (UnTRIM, ELCIRC,
FVCOM).

However, modeling circulation across ocean scales still
poses serious challenges and remains an open issue in mod-
ern oceanography. Particularly challenging is the modeling
of river–estuary–plume–shelf systems, given the range of
processes and the tight coupling among the temporal and
spatial scales involved. Although a domain nesting with
same or different models remains an option, for these sys-
tems there is a clear incentive to develop cross-scale circu-
lation models that can extend from the estuary into the
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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shelf and beyond. Properly addressing the modeling of
river–estuary–plume–shelf systems is particularly pertinent
at a time when ocean observing systems (Baptista, 2006;
Martin, 2003; Clark and Isern, 2003) are being imple-
mented across the United States and around the world.
Indeed, inherent to the concept of ocean observing is ubiq-
uitous land-to-ocean modeling, in the form of near real-
time forecasting and climate-scale simulation databases.

The main challenge to a cross-scale circulation model is
to resolve the complex geometry and bathymetry com-
monly found in coasts, estuaries, tidal flats and rivers in
an accurate, efficient and robust way, while maintaining
adequate resolution in the deep ocean. Circulation models
based on an unstructured grid are ideal for this, but so far,
there have been few that can meet the challenge mentioned
above, despite considerable research efforts that have gone
into developing such models. Models based on fully 3D
unstructured grids (Cheng et al., 2000; Labeur and Pietr-
zak, 2005; Danilov et al., 2004) are so far too expensive
for large applications. Models based on the explicit mode
splitting technique (POM, ROMS, FVCOM, ADCIRC,
QUODDY, SEOM), in addition to having errors associ-
ated with the splitting of the internal and external modes
(Shchepetkin and McWilliams, 2005), suffer from numeri-
cal stability constraints (e.g., the Courant–Friedrich–Lewy
(CFL) condition) that restrict the maximum allowable time
step and thus the size of the problem.

Since the 1990s, a family of semi-implicit unstructured
grid models (UnTRIM; SUNTANS (Fringer et al., 2006);
ELCIRC), hereafter referred to as ‘‘UnTRIM-like mod-
els”, have shown great promise as the new generation of
cross-scale circulation models – a promise reinforced by
variations1 to these models such as Walters (2005) and Leu-
pi and Altinakar (2005). The UnTRIM-like models treat
implicitly the terms – barotropic-pressure gradient, vertical
viscosity in the momentum equations, and divergence term
in the continuity equation – that place the most severe con-
straints on numerical stability (e.g., CFL condition), and
treat all other terms explicitly. With this approach, there
is no mode splitting into external and internal modes.
Moreover, the resulting matrix is positive definite, symmet-
ric and sparse, and therefore very efficient solvers (e.g.,
Jacobian Conjugate Gradient) can be used that guarantee
fast convergence. As a result, most severe numerical con-
straints are by-passed, resulting in greater numerical effi-
ciency. However, because piecewise constant shape
functions are used to represent the elevation, over dissipa-
tion may occur, as shown for ELCIRC by Baptista et al.
(2005). In addition, due to the finite-difference method used
in UnTRIM-like models, grid orthogonality is required
(Casulli and Walters, 2000), which has important implica-
155

156
1 While the UnTRIM-like models use a finite-difference/finite-volume

method, the models of Walters (2005), Leupi and Altinakar (2005), and
Miglio et al. (1999) use the lowest-order Raviart–Thomas element in the
horizontal direction. The resulting equations are essentially the same as
those in UnTRIM-like models.
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tions for convergence and accuracy, as we will demonstrate
in this paper. Ham et al. (2005) proposed a path integral
method that does not require grid orthogonality; however,
in their method, the resulting matrix is no longer symmetric
positive definite, thus destroying one of the main advanta-
ges of UnTRIM-like models.

The opportunity for improving ELCIRC was well illus-
trated by its application to the Columbia River estuary–
plume–shelf system. The Columbia River plume is a major
oceanographic feature of the eastern boundary of the
North Pacific Ocean (Hickey et al., 1998; Hickey and
Banas, 2003). Ranked second in annual river discharge in
the United States (first worldwide among rivers without a
delta), the Columbia River has extensive tidal flats, strong
tides, and very large velocities and velocity gradients cou-
pled with extreme density gradients. Depending on the
river discharge, the estuary can change from well mixed
to highly stratified, salt wedge conditions (Jay and Smith,
1990a,b). The Columbia River plume extends hundreds
of kilometers into the ocean along a continental shelf that
is subject to strong wind-driven upwelling and downwelling
regimes, the influence of which is felt deep in the estuary.

In spite of the complexity of the Columbia River, the
robustness and computational efficiency of ELCIRC has
enabled daily forecasts and multi-year simulation dat-
abases of 3D baroclinic circulation in the estuary and
plume (Baptista et al., 2005) to become core capabilities
of an observing system (CORIE, Baptista, 2006). By con-
trast, our prior attempts to study the system with 3D baro-
clinic models (QUODDY and POM), circa 1996–1999,
were largely unsuccessful due to computational constraints
or to limitations in representing key circulation processes
and scales (e.g., wetting and drying of tidal flats).

Although the successful use of ELCIRC in CORIE and
in other systems (Pinto et al., 2004; Foreman et al., 2006)
demonstrates the model’s ability to capture important fea-
tures of complex cross-scale circulation, limitations persist.
Figs. 1 and 2 illustrate two complementary aspects of one
such limitation in the context of the application to the
Columbia River: ELCIRC tends to under-predict the intru-
sion of salt in the estuary (Fig. 1), resulting in and being
augmented by general overestimation of the plume fresh-
ness, despite qualitative plume features being well captured
(Fig. 2).2

The need to further improve ELCIRC triggered the
development of SELFE (Semi-implicit Eulerian–Lagrang-
ian Finite Element). SELFE retains the robustness and
computational efficiency of ELCIRC, while eliminating
grid orthogonality requirements, allowing higher-order
shape functions to be used, and enabling superior flexibility
in representing bathymetry and vertical structure of the
water column (see the discussions in the next paragraph).
As will be documented in this paper and elsewhere, and
2 While ELCIRC results can be improved through aggressive grid
refinement, we only found marginal improvement due to its slow
convergence rate.

E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig. 1. The figure compares (a) week-long time histories of salinity at a bottom sensor at a real-time observation (am169; see insert) in the Columbia River
estuary. It also contrasts maximum salinity penetration at the bottom of the estuary computed by (b) ELCIRC and (c) SELFE. During freshet periods,
such as the week shown, salinity at am169 is a severe benchmark for model performance, because of its relative proximity to upper limit of salinity
intrusion. For the period shown, and as a general tendency throughout the year, SELFE outperforms ELCIRC in the ability to simulate salinities at
am169, as well as extent of salinity intrusion (not shown).
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partially illustrated in Figs. 1 and 2, the improvements
introduced in SELFE have important consequences: in
general, SELFE describes complex ocean circulation fea-
tures more accurately than does ELCIRC, with the differ-
ences being large enough to be relevant for scientific
understanding and for management and operation of the
Columbia River.

We attribute the superior performance of SELFE to
overcoming the ELCIRC limitations described below:

1. ELCIRC uses constant shape functions to solve for ele-
vations from the depth-integrated continuity equation, a
natural choice given the model’s finite-volume frame-
work. In addition to the obvious drawback of low accu-
racy, this strategy also causes difficulty in evaluating first
derivatives, a crucial step in correctly treating the Cori-
olis term (Zhang et al., 2004).

2. The orthogonality requirement, which originates from
the finite-difference framework used in UnTRIM-like
models, is very restrictive for the design and construc-
tion of unstructured grids. In practice, this requirement
is often not strictly adhered to, resulting in degradation
of accuracy. For example, we will demonstrate in Sec-
tion 4.1.1 that no convergence is guaranteed for non-

orthogonal grids (see Fig. 6a).
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
3. ELCIRC uses Z coordinates in the vertical, which intro-
duces a staircase representation of the bottom and there-
fore fails to resolve the bottom boundary layer, with
significant limitations for the representation of bot-
tom-controlled estuarine processes (Zhang et al., 2004).

Although ELCIRC does not necessarily represent all
UnTRIM-like models, the above limitations appear com-
mon among such models (e.g., see p. 335 and Fig. 1 of
Casulli and Walters, 2000).

SELFE overcomes the first two limitations by using a
formal Galerkin finite-element framework, supported at a
minimum by linear shape functions. It partially addresses
the third limitation by using hybrid SZ coordinates in the
vertical direction. The flexibility afforded by the hybrid
SZ coordinates is extremely important to enable a single
model to correctly model estuary-plume systems, where
depths change from O(1 m) to O(1000 m). Indeed, Z coor-
dinates are necessary to properly represent thin surface
plumes (Section 4.4), while terrain-following S coordinates
are necessary to properly represent the bottom boundary
layer and thus processes such as frictional losses and salin-
ity intrusion into the estuary (e.g., Fig. 1).

This paper describes the physical and numerical formu-
lations of SELFE (Sections 2 and 3) and compares the per-
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig. 2. The top three images show salinities along the path of the R/V Piky during a July 10, 2005 cruise in the Columbia River plume. Salinities are
described by: (a) ELCIRC daily forecasts; (b) observations; and (c) SELFE daily forecasts. The bottom image shows contrasting time histories of the same
information. SELFE forecasts clearly outperform ELCIRC forecasts for this specific period, and, although details do vary, also consistently do so during
multiple cruises conducted by three different vessels since June 13, 2005. All times shown are Pacific Standard Time.
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left to future publications.
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E2. Physical formulation of SELFE

SELFE solves the 3D shallow-water equations, with
hydrostatic and Boussinesq approximations, and transport
equations for salt and heat. The primary variables that
SELFE solves are free-surface elevation, 3D velocity, 3D
salinity, and 3D temperature of the water. In a Cartesian
frame, the equations read:

r � uþ ow
oz
¼ 0 ð1Þ

og
ot
þr �

Z g

�h
u dz ¼ 0 ð2Þ

Du

Dt
¼ f � grgþ o

oz
m
ou

oz

� �
; f ¼ �f k� uþ agrŵ

� 1

q0

rpA �
g
q0

Z g

z
rqdfþr � ðlruÞ ð3Þ

DS
Dt
¼ o

oz
j

oS
oz

� �
þ F s ð4Þ

DT
Dt
¼ o

oz
j

oT
oz

� �
þ

_Q
q0Cp

þ F h ð5Þ
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
where
(x,y) horizontal Cartesian coordinates (m)
z vertical coordinate, positive upward (m)
$ o

ox ;
o
oy

� �
t time (s)
g(x,y, t) free-surface elevation (m)
h(x,y) bathymetric depth (m)
u(x,y,z, t) horizontal velocity, with Cartesian components

(u,v) (m s�1)
w vertical velocity (m s�1)
f Coriolis factor (s�1) (Section 2.5)
g acceleration of gravity (m s�2)
ŵð/; kÞ earth-tidal potential (m) (Section 2.5)
a effective earth-elasticity factor
q(x, t) water density; by default, reference value q0 is set

as 1025 kg m�3

pA(x,y, t) atmospheric pressure at the free surface (N m�2)
S,T salinity and temperature of the water (practical

salinity units (psu), �C)
m vertical eddy viscosity (m2 s�1)
l horizontal eddy viscosity (m2 s�1)
j vertical eddy diffusivity, for salt and heat (m2 s�1)
Fs, Fh horizontal diffusion for transport equations (ne-

glected in SELFE)
_Q rate of absorption of solar radiation (W m�2)
Cp specific heat of water (J kg�1 K�1)

The differential system Eqs. (1)–(5) are closed with: (a) the
equation of state describing the water density as a function
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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of salinity and temperature, (b) the definition of the tidal
potential and Coriolis factor, (c) parameterizations for hor-
izontal and vertical mixing, via turbulence closure equa-
tions, and (d) appropriate initial and boundary
conditions. Details for (a) and (b) can be found in Zhang
et al. (2004); (c) will be discussed in Sections 2.1 and
3.3.2, and (d) in Sections 2.2 and 3.2.

2.1. Turbulence closure model

SELFE uses the Generic Length Scale (GLS) turbulence
closure of Umlauf and Burchard (2003), which has the
advantage of encompassing most of the 2.5-equation clo-
sure models (k–e(Rodi, 1984); k–x (Wilcox, 1998); Mellor
and Yamada, 1982). In this framework, the transport, pro-
duction, and dissipation of the turbulent kinetic energy (K)
and of a generic length-scale variable (w) are governed by:

DK
Dt
¼ o

oz
mw

k

oK
oz

� �
þ mM2 þ lN 2 � e; ð6Þ

Dw
Dt
¼ o

oz
mw

ow
oz

� �
þ w

K
cw1mM2 þ cw3lN 2 � cw2F we
� �

; ð7Þ

where mw
k and mw are vertical turbulent diffusivities, cw1, cw2

and cw3 are model-specific constants (Umlauf and Bur-
chard, 2003; Zhang et al., 2004), Fw is a wall proximity
function, M and N are shear and buoyancy frequencies,
and e is a dissipation rate. The generic length-scale is de-
fined as

w ¼ c0
l

� �p
Km‘n; ð8Þ

where c0
l ¼ 0:31=2 and ‘ is the turbulence mixing length. The

specific choices of the constants p, m and n lead to the dif-
ferent closure models mentioned above. Finally, vertical
viscosities and diffusivities as appeared in Eqs. (3)–(5) are
related to K, ‘, and stability functions:

m ¼
ffiffiffi
2
p

smK1=2‘

l ¼
ffiffiffi
2
p

shK1=2‘

mw
k ¼

m

rw
k

m¼w
m
rw
;

ð9Þ

where the Schmidt numbers rw
k and rw are model-specific

constants. The stability functions (sm and sh) are given by
an Algebraic Stress Model (e.g.: Kantha and Clayson,
1994; Canuto et al., 2001; or Galperin et al., 1988).

At the free surface and at the bottom of rivers and
oceans, the turbulent kinetic energy and the mixing length
are specified as Direchlet boundary conditions:

K ¼ 1

2
B2=3

1 jsbj2; ð10Þ

‘ ¼ j0db or j0ds; ð11Þ

where sb is a bottom frictional stress (Eq. (14)), j0 = 0.4 is
the von Karman’s constant, B1 is a constant, and db and ds
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
are the distances to the bottom and the free surface,
respectively.
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2.2. Vertical boundary conditions for the momentum

equation

The vertical boundary conditions for the momentum
equation – especially the bottom boundary condition –
play an important role in the SELFE numerical formula-
tion, as it involves the unknown velocity (see Section 3).
In fact, as a crucial step in solving the differential system,
SELFE uses the bottom boundary condition to decouple
the free-surface Eq. (2) from the momentum Eq. (3).

At the sea surface, SELFE enforces the balance between
the internal Reynolds stress and the applied shear stress:

m
ou

oz
¼ sw; at z ¼ g ð12Þ

where the stress sw can be parameterized using the ap-
proach of Zeng et al. (1998) or the simpler approach of
Pond and Pickard (1998).

Because the bottom boundary layer is usually not well
resolved in ocean models, the no-slip condition at the sea
or river bottom (u = w = 0) is replaced by a balance
between the internal Reynolds stress and the bottom fric-
tional stress,

m
ou

oz
¼ sb; at z ¼ �h: ð13Þ

The specific form of the bottom stress sb depends on the
type of boundary layer used. While the numerical method
for SELFE as outlined in Section 3 can be applied to other
types of bottom boundary layer (e.g., laminar boundary
layer), we will only discuss the turbulent boundary layer
below (Blumberg and Mellor, 1987), given its prevalent
usage in ocean modeling. The bottom stress in Eq. (13) is
then:

sb ¼ CDjubjub: ð14Þ

The velocity profile in the interior of the bottom boundary
layer obeys the logarithmic law:

u ¼ ln ðzþ hÞ=z0½ �
lnðdb=z0Þ

ub; ðz0 � h 6 z 6 db � hÞ; ð15Þ

which is smoothly matched to the exterior flow at the top
of the boundary layer. In Eq. (15), db is the thickness of
the bottom computational cell (assuming that the bottom
is sufficiently resolved in SELFE that the bottom cell is in-
side the boundary layer), z0 is the bottom roughness, and
ub is the velocity measured at the top of the bottom compu-
tational cell. Therefore the Reynolds stress inside the
boundary layer is derived from Eq. (15) as

m
ou

oz
¼ m
ðzþ hÞ lnðdb=z0Þ

ub: ð16Þ

Utilizing the turbulence closure theory discussed in Section
2.1, the eddy viscosity can be found from Eq. (9), with the
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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stability function, the turbulent kinetic energy, and the
mesoscale mixing length given by:

sm ¼ g2;

K ¼ 1

2
B2=3

1 CDjubj2

‘ ¼ j0ðzþ hÞ;

ð17Þ

where g2 and B1 are constants with g2B1=3
1 ¼ 1. Therefore,

the Reynolds stress is constant inside the boundary layer:

m
ou

oz
¼ j0

lnðdb=z0Þ
C1=2

D jubjub; ðz0 � h 6 z 6 db � hÞ; ð18Þ

and the drag coefficient is calculated from Eqs. (13), (14),
and (18) as

CD ¼
1

j0

ln
db

z0

� ��2

; ð19Þ

which is the drag formula as discussed in Blumberg and
Mellor (1987). Eq. (18) also shows that the vertical viscos-
ity term in the momentum equation Eq. (3) vanishes inside
the boundary layer. This fact will be utilized in the numer-
ical model of SELFE in Section 3.

3. Numerical formulation of SELFE

Numerical efficiency and accuracy consideration dictates
the numerical formulation of SELFE. SELFE solves the
differential equation system described in Section 2 with
finite-element and finite-volume schemes. No mode split-
ting is used in SELFE, thus eliminating the errors associ-
ated with the splitting between internal and external
modes (Shchepetkin and McWilliams, 2005). Semi-implicit
schemes are applied to all equations; the continuity and
momentum equations (Eqs. (2) and (3)) are solved simulta-
neously, thus bypassing the most severe stability restric-
tions (e.g. CFL). A key step in SELFE is to decouple the
continuity and momentum equations (Eqs. (2) and (3))
via the bottom boundary layer, as will be shown in Section
3.2. SELFE uses an Eulerian–Lagrangian method (ELM)
to treat the advection in the momentum equation, thus fur-
ther relaxing the numerical stability constraints. The advec-
tion terms in the transport equations (Eqs. (4) and (5)) are
treated with either ELM or a finite-volume upwind method
(FVUM), the latter being mass conservative.

3.1. Domain discretization

In SELFE, unstructured triangular grids are used in the
horizontal direction, while hybrid vertical coordinates –
partly terrain-following S coordinates and partly Z coordi-
nates – are used in the vertical direction. The origin of the
z-axis is at the undisturbed Mean Sea Level (MSL). The
terrain-following S layers (Song and Haidvogel, 1994) are
placed on top of a series of Z layers (Fig. 3a and b), with
the demarcation line between S and Z layers located at
level kz (z =� hs). That is to say, the vertical grid is allowed
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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to follow the terrain up to a maximum depth of hs. The free
surface is at level Nz throughout the domain (for all wet
points), but the bottom level indices, kb, may vary in space
due to the staircase representation of the bottom in Z lay-
ers. Note that kb

6 kz and the equality occurs when the
local depth h 6 hs. A ‘‘pure S” representation is a special
case with kb = kz = 1 and hs greater than the maximum
depth in the domain, but a ‘‘pure Z” model is not a special
case in SELFE. The details of the terrain-following coordi-
nates used in SELFE can be found in Appendix A. The
rationale for using such a hybrid coordinate system is dis-
cussed next.

The ‘‘pure S” representation of SELFE was initially
chosen by the authors to avoid the staircase representation
of the bottom and surface, and thus loss of accuracy com-
monly associated with the Z coordinates. While sufficient
and preferable for some applications, the ‘‘pure S” SELFE
suffers from the so-called hydrostatic inconsistency (Sec-
tion 3.3.3) commonly associated with the terrain-following
coordinate models, and fails in applications involving
steep bathymetry and strong stratification, as found in
freshwater plumes of largest rivers like Columbia River.
As will be demonstrated in the benchmark test in Section
4.4, the inclusion of Z layers effectively alleviates the
hydrostatic inconsistency and results in a physically more
realistic plume. Therefore the hybrid vertical coordinate
system has the benefits of both S and Z coordinates: the
S layers used in the shallow region (h 6 hs) resolve the
bottom efficiently and the Z layers, which are only used
in the deep region with h > hs, fend off the hydrostatic
inconsistency. The effects of the staircase representation
of the bottom are arguably small in the deep region
because the velocities there are small; the effects can also
be minimized by choosing the largest possible value for
hs for a given application.

The use of a hybrid vertical coordinate system raises the
issue of in which coordinate system the equations should be
solved. We solve all equations in their original forms in the
untransformed Z coordinates and use the transformation
in Eq. (47) (in Appendix A) only to generate a vertical grid
and to evaluate the horizontal derivatives (such as the hor-
izontal viscosity). The main reason for not transforming
the equations into S coordinates is that the transformation
is degenerate under the special circumstances described in
Appendix A (Eqs. (50) and (51)). Therefore the role of ver-
tical coordinates is mostly hidden in SELFE; all equations
but one (the integrated continuity equation) are solved
along the vertical direction only, which can be done on
any vertical grid (including, in theory, an unstructured
grid). The liberal treatment of the vertical coordinates
makes the implementation of the hybrid vertical coordi-
nates (SZ) system easier. A similar approach was also used
by Shchepetkin and McWilliams (2005), who solved the
equations in the Z space despite the S coordinates being
used in the vertical direction.

Strictly speaking, since the free surface is moving and so
are the upper S levels (in the original Z space), all variables
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig. 3. Vertical grid and hybrid coordinate system. (a) Schematic view. S-levels are always on top of Z-levels. (b) Vertical transect view of the discretized
domain. Bottom cells are highlighted. (c) Basic computational unit of a triangular prism, with uneven top and bottom surfaces.
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the levels are updated at the end of each time step. How-
ever, the effects of the movement of the S levels from one
time step to the next are negligible, as long as the vertical
movement of the free surface within a step is much smaller
than the minimum layer thickness. This condition is easily
satisfied in most practical applications; for example, in typ-
ical tidal-driven circulations, the maximum displacement of
the free surface in a time step as large as 5 minutes is only a
few centimeters or less, which is much smaller than a typi-
cal top layer thickness of a few meters or more. Therefore,
we chose to skip this interpolation step in SELFE, as a lin-
ear interpolation would introduce additional numerical dif-
fusion, and a higher-order interpolation would introduce
numerical dispersion into the solution. Note that a similar
omission also occurs in many Z coordinate models, where
the top layers also change with time.

In many parts of SELFE, interpolation at an arbitrary
location in 3D space is necessary; examples include the
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
interpolation at the foot of the characteristic line (Sec-
tion 3.3.1) and the conversion of velocity from element
sides to nodes (Section 3.2). The horizontal interpolation
is usually done on a fixed Z-plane (instead of along an S

plane). One problem with this approach is the loss of
accuracy near the bottom and the free surface (Fortuna-
to and Baptista, 1996). Therefore in SELFE, the interpo-
lation can be optionally done in the transformed S space
in regions where no Z layers are used (‘‘pure S region”

with h 6 hs). The latter approach is more accurate in
shallow regions where rapid changes in bathymetry are
common.

In the horizontal dimension, unstructured triangular
grids are used, and the connectivity of the grid is defined
as follows: the three sides of an element i are enumerated
as js(i, l) (l = 1,2,3). The surrounding elements of a partic-
ular node i are enumerated as ine(i, l) (l = 1, . . . ,nne(i)),
where nne(i) is the total number of elements in the ‘‘ball”
of the node.
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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After the domain is discretized horizontally and verti-
cally, the basic 3D computational units of SELFE are tri-
angular prisms (see Fig. 3c). In the original Z space, the
prisms may not have level bottom and top surfaces. A
staggering scheme is used to define variables. The surface
elevations are defined at the nodes. The horizontal veloc-
ities are defined at the side centers and whole levels. The
vertical velocities are defined at the element centers and
whole levels as they are solved with a finite-volume
method. The linear shape functions are used for elevations
and velocities; we note, however, that for velocities, shape
functions are only used for interpolation at the feet of
characteristic lines (Section 3.3.1). Note that the shape
functions used here are different from those in a lowest-
order Raviart–Thomas element (Walters, 2005), in that
the elevations are not constant within an element but con-
tinuous across elements. The locations where salinities
and temperatures are defined depend on the method used
to solve the transport equations; they are defined at the
prism centers if the FVUM is used (Section 3.4), and at
both nodes and side centers, at whole levels, if the ELM
is used (Section 3.3.1).
T
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3.2. Barotropic module

SELFE solves the barotropic Eqs. (1)–(3) first, as the
transport and turbulent closure equations lag one time step
behind (in other words, the baroclinic pressure gradient
term in the momentum equation is treated explicitly in
SELFE). The transport and turbulent closure equations
will be discussed in Section 3.4. Due to the hydrostatic
approximation, the vertical velocity w is solved from Eq.
(1) after the horizontal velocity is found. To solve the cou-
pled Eqs. (2) and (3), we first discretize them and the verti-
cal boundary conditions Eqs. (12) and (13) semi-implicitly
in time as:

gnþ1 � gn

Dt
þ hr �

Z g

�h
unþ1 dzþ ð1� hÞr �

Z g

�h
un dz

¼ 0 ð20Þ

unþ1 � u�

Dt
¼ fn � ghrgnþ1 � gð1� hÞrgn þ o

oz
mn ounþ1

oz

� �
;

ð21Þ

mn ounþ1

oz ¼ snþ1
w ; at z ¼ gn;

mn ounþ1

oz ¼ vnunþ1
b ; at z ¼ �h;

(
ð22Þ

where superscripts denote the time step, 0 6 h 6 1 is the
implicitness factor, u*(x,y,z, tn) is the back-tracked value
calculated with ELM (Section 3.3.1), and vn ¼ CDjun

bj.
The elevations in the second and third terms of Eq. (20)
are treated explicitly, which effectively amounts to a linear-
ization procedure.

A Galerkin weighted residual statement in the weak
form for Eq. (20) reads:
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Z
X
/i

gnþ1� gn

Dt
dX

þ h �
Z

X
r/i �Unþ1 dXþ

Z
Cv

/i
bU nþ1

n dCvþ
Z

�Cv

/iU
nþ1
n d�Cv

	 

þð1� hÞ �

Z
X
r/i �Un dXþ

Z
C
/iU

n
n dC

	 

¼ 0;

ði¼ 1; . . . ;NpÞ ð23Þ

where Np is the total number of nodes, C � Cv þ Cv is the
boundary of the entire domain X, with Cv corresponding
to the boundary segments where natural boundary condi-
tions are specified, U ¼

R g
�h udz is the depth-integrated

velocity, Un is its normal component along the boundary,
and bU n is the boundary condition. In SELFE, linear shape
functions are used; thus, /i are conventional ‘‘hat”
functions.

Integrating the momentum Eq. (21) along the vertical
direction leads to:

Unþ1 ¼ Gn � ghH nDtrgnþ1 � vnDtunþ1
b ð24Þ

with

Gn ¼ U� þ Dt Fn þ snþ1
w � gð1� hÞH nrgn

� �
;

Hn ¼ hþ gn; Fn ¼
Z gn

�h
f dz; U� ¼

Z gn

�h
u� dz

ð25Þ

Note that Eq. (24) involves no vertical discretization as it is
merely an analytical integration of Eq. (21).

To eliminate the unknown unþ1
b in Eq. (24), we invoke

the discretized momentum equation, as applied to the top
of the bottom cell:

unþ1
b � u�b

Dt
¼ fn

b � ghrgnþ1 � gð1� hÞrgn þ o

oz
mn ounþ1

oz

� �
;

at z ¼ db � h: ð26Þ

However, since the viscosity term vanishes inside the bot-
tom boundary layer (Eq. (18)), the bottom velocity can
be formally solved as:

unþ1
b ¼ f̂n

b � ghDtrgnþ1; ð27Þ

where

f̂n
b ¼ u�b þ fn

bDt � gDtð1� hÞrgn: ð28Þ

Note that although the vertical viscosity is not explicitly
present in Eq. (27), it is indirectly involved through terms
u*

b and the Coriolis term in fn
b. Substituting Eq. (27) into

Eq. (24) results in:

Unþ1 ¼ bGn � gh bH nDtrgnþ1; ð29Þ

wherebGn ¼ Gn � vnDtbf n
b;
bH n ¼ Hn � vnDt: ð30Þ

It is interesting to note from Eq. (30) that the bottom fric-
tion reduces the total depth by an amount that is propor-
tional to the drag coefficient and the bottom velocity.
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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For simplicity the Coriolis terms are treated explicitly in
SELFE. It is well known that the explicit treatment of the
Coriolis terms is stable but introduces damping (Wicker
and Skamarock, 1998). SELFE could have instead been
formulated to treat the Coriolis terms implicitly, in which
case, the two components of U would become coupled in
Eq. (29), but could still be solved simultaneously from this
equation.

Since SELFE uses linear shape functions for the eleva-
tions, the two components of the horizontal velocity, u

and v, are solved from the momentum equation indepen-
dently from each other after the elevations are found. This
approach has important implications as far as the Coliolis
is concerned, and is different from that used in ELCIRC.
As a matter of fact, special treatment must be made to find
the tangential velocity components in UnTRIM-like mod-
els after the normal velocities are found, as discussed in
Zhang et al. (2004) and Ham et al. (2005).

Finally, substitution of Eq. (29) into Eq. (23) leads to an
equation for elevations alone:Z

X
/ig

nþ1 þ gh2Dt2 bH nr/i � rgnþ1
h i

dX� gh2Dt2

�
Z

�Cv

/i
bH n ognþ1

on
d�Cv þ hDt

Z
Cv

/i
bU nþ1

n dCv ¼ In ð31Þ

where In consists of some explicit terms:

In ¼
Z

X
/ig

n þ ð1� hÞDtr/i �Un þ hDtr/i � bGn
h i

dX

� ð1� hÞDt
Z

C
/iU

n
ndC� hDt

Z
�Cv

/in � bGn d�Cv

ð32Þ
Following standard finite-element procedures, and using

appropriate essential and natural boundary conditions,
SELFE solves Eq. (31) to determine the elevations at all
nodes. For example, the integrals on �Cv need not be evalu-
ated if the essential boundary conditions are imposed by
eliminating corresponding rows and columns of the matrix.
Natural boundary conditions are used to evaluate the inte-
gral on Cv on the left-hand side of Eq. (31). If a Flather-
type radiation condition (Flather, 1987) needs to be
applied, it can be done in the following fashion:bUnþ1

n � Un ¼
ffiffiffiffiffiffiffiffiffi
g=H

p
ðgnþ1 � �gÞ; ð33Þ

where U n and �g are specified incoming current. The matrix
resulting from Eq. (31) is sparse and symmetric. It is also
positive-definite if a mild restriction is placed on the fric-
tion-reduced depth in the form of bH n P 0. Numerical
experiments (not shown) indicated that even this restriction
can be relaxed for many practical applications that include
shallow areas. The matrix can be efficiently solved using a
pre-conditioned Conjugate Gradient method (Casulli and
Cattani, 1994).

After the elevations are found, SELFE solves the
momentum Eq. (3) along each vertical column at side cen-
ters. A semi-implicit Galerkin finite-element method is
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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used, with the pressure gradient and the vertical viscosity
terms being treated implicitly, and other terms treated
explicitly:Z g

�h
ck u� Dt

o

oz
m
ou

oz

� �	 
nþ1

j;k

dz

¼
Z g

�h
ck u� þ Dt fn

j;k � ghrgnþ1
j � gð1� hÞrgn

j

h in o
dz;

ð34Þ

where ck(z) is the hat function in the vertical dimension.
The two terms that are treated implicitly would have im-
posed the most severe stability constraints. The explicit
treatment of the baroclinic pressure gradient and the hori-
zontal viscosity terms, however, does impose mild stability
constraints (Section 3.5).

After the velocities at all sides are found, the velocity at
a node, which is needed in ELM, is evaluated by a weighted
average of all surrounding sides in its ball, aided by proper
interpolation in the vertical. The procedure to average the
velocities (or alternatively calculating the velocity at a node
based on a least-square fit from all surrounding sides)
introduces numerical diffusion of the same order as the
ELM (see Section 3.3.1). This is because the velocities at
nodes are not used anywhere else in the model except in
ELM tracking and interpolation. As an alternative to the
averaging procedure, the velocity at a node is computed
within each element from the three sides using the linear
shape function and is kept discontinuous between elements.
This approach leads to parasitic oscillations, but a Shapiro
filter (Shapiro, 1970) can be used to suppress the noise,
with minimum distortion of physical features. Our preli-
minary results indicate that the filter approach induces less
numerical diffusion.

The vertical velocity serves as a diagnostic variable for
local volume conservation,3 but is a physically important
quantity, especially when a steep slope is present (Zhang
et al., 2004). To solve the vertical velocity, we apply a
finite-volume method to a typical prism, as depicted in
Fig. 3c, assuming that w is constant within an element i,
and obtain:bS kþ1ð�unþ1

kþ1nx
kþ1 þ �vnþ1

kþ1ny
kþ1 þ wnþ1

i;kþ1nz
kþ1Þ

� bS kð�unþ1
k nx

k þ �vnþ1
k ny

k þ wnþ1
i;k nz

kÞ

þ
X3

m¼1
bP jsði;mÞðq̂nþ1

jsði;mÞ;k þ q̂nþ1
jsði;mÞ;kþ1Þ=2 ¼ 0;

ðk ¼ kb; . . . ;Nz � 1Þ ð35Þ

where bS and bP are the areas of the five prism surfaces
(Fig. 3c), (nx,ny,nz), are the normal vector (pointing up-
ward), �u and �vthe averaged horizontal velocities at the
top and bottom surfaces, and q̂ is the outward normal
velocity at each side center. The vertical velocity is then
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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solved from the bottom to the surface, in conjunction with
the bottom boundary condition (u,v,w) � n = 0. The closure
error between the calculated w at the free surface and the
surface kinematic boundary condition is an indication of
the local volume conservation error (Luettich et al.,
2002). Because the primitive form of the continuity equa-
tion is solved in the model, this closure error is in general
negligible.

As in UnTRIM-like models, one of the prominent fea-
tures of SELFE is its natural treatment of wetting and dry-
ing in shallow areas. A node is considered wet (or dry)
whenever the total depth H at the node is above (or below)
the specified minimum depth h0. With an appropriate wet-
ting and drying algorithm, SELFE has been rigorously
benchmarked against analytical solutions for wave run-
up on a beach, and successfully applied to coastal inunda-
tion by tsunamis (Zhang et al., in preparation).
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3.3. Treatment of explicit terms

3.3.1. Advection

SELFE treats the advection in the momentum and
transport equations with ELM. In this method, a fluid par-
ticle is tracked from its position at step n + 1 backwards in
time and in 3D space to find its originating position at step
n, followed by an interpolation at the foot of the character-
istic line to evaluate the variable of interest. In SELFE,
backtracking is done using either an Euler scheme or a
more accurate, but expensive, fifth-order embedded Run-
ge–Kutta scheme (Press et al., 1992); the latter method is
needed for problems that pose special challenges for vol-
ume conservation, since tracking errors affect the volume
conservation (Oliveira and Baptista, 1998).

The order of interpolation in ELM determines whether
the leading-order truncation error is diffusion- or disper-
sion-dominant (Oliveira and Baptista, 1995). For velocity,
linear interpolation is used,4 i.e., the interpolation is done
using the velocity information at the three nodes of the ele-
ment that contains the foot of the characteristic line. In one
dimension, this ELM introduces a diffusion-like leading-
order truncation error in the following form (Baptista
et al., 2005; Casulli and Cattani, 1994):

e1 ¼
v0�

2Dt
ðxiþ1 � x�Þðx� � xiÞ

¼ Dx2

2Dt
v0�½Cu�ð1� ½Cu�Þje1j 6

Dx2

8Dt
jv00� j; ð36Þ

where v is the analytical solution for velocity, x = x* is the
location of the foot of the characteristic line, [xi+1,xi+1] is
the interval encompassing the foot, and [Cu] is the frac-
tional part of the Courant number Cu = vDt/Dx. Since
4 Alternative higher-order interpolation scheme based on Kriging (Le
Roux et al., 1997) has also been implemented. This scheme is only
marginally more expensive as the Kriging matrix depends on geometry
only and needs to be inverted once, but sometimes offers significant
improvement in accuracy.
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the velocities at the two nodes of the interval are not exact
but have errors from the averaging procedure described in
Section 3.2, an additional truncation error occurs, the lead-
ing-order term of which is

e2 ¼
Dx2

8Dt
v00�: ð37Þ

Therefore the two errors e1 and e2 are of the same order of
magnitude.

We note from Eq. (36) that the numerical diffusion is
controlled by the Courant number, and is null when
[Cu] = 0. As will be demonstrated in Section 4.1.1 (also in
Zhang et al., 2004), numerical accuracy is the best when
Cu P 1. Should the numerical diffusion become excessive
due to a small Courant number, a larger time step or smal-
ler grid size needs to be used. The numerical diffusion can
also be reduced by using the discontinuous nodal velocity
for ELM in conjunction with a Shapiro filter, as mentioned
in Section 3.2.

The advection in the transport equations can also be
treated using ELM. In this case, the linear interpolation
often is excessively diffusive and therefore the quadratic
interpolation or an element-splitting procedure, like the
one suggested in Zhang et al. (2004), is used to reduce
the numerical diffusion. The latter amounts to using a finer
grid for the transport equations. The quadratic interpola-
tion can be achieved by using the quadratic triangular ele-
ment (Lapidus and Pinder, 1982, p. 116), and the quadratic
function in the vertical direction, with an upwind bias.
778778

779

780
3.3.2. Horizontal viscosity

Many circulation models rely on explicitly specified hor-
izontal viscosity/diffusivity to eliminate the spurious oscil-
lations; others (e.g., Marshall et al., 1997) use filters to
suppress the sub-grid noise. Diffusion, either explicitly or
implicitly implemented, achieves the same goal of eliminat-
ing the spurious oscillations.

The horizontal diffusion in the transport equations Eqs.
(4) and (5) is neglected in SELFE, because the inherent
numerical diffusion in ELM or FVUM is sufficient to sup-
press high-frequency spurious oscillations (Zhang et al.,
2004). SELFE is also often run without horizontal viscosity
because of the inherent numerical diffusion in ELM, or the
effectiveness of Shapiro filter in eliminating numerical
oscillations.

When needed, the horizontal viscosity can be calculated
in the following fashion. The corresponding part in In isZ

X
r/i � bG0 dX ¼ Dtr/i

�
Z

X

Z g

�h
r � ðlruÞdz� vDtr � ðlrubÞ

	 

dX ¼ Dtr/i

�
Z

S
ln � rudS � �vDt

Z
S0

ln � rub dS0
	 


ð38Þ

where all terms are evaluated at time step n, �v denotes the
average of v, S0 is the boundary of the ball of node i, and S
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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is the exterior surface of the volume spanned by the ball
from the bottom to the surface. To evaluate the gradient
$u, which is defined in the original Z plane, the chain rule
is used. For example:

ou

ox


z

¼ ou

ox


r

� ou

oz
oz
ox
: ð39Þ

The horizontal viscosity, l, is conventionally specified as a
constant or calculated from Smagorinsky parameterization
(Smagorinsky, 1963). However, since the leading-order
truncation error in the advection is given by Eq. (36),
SELFE uses the following alternative parameterization
for l:

l ¼ c
A
Dt
; ð40Þ

where A is the local element area, and c is a dimensionless
constant. For stability reasons, c 6 0.5 (see Eq. (45)).

3.3.3. Baroclinic pressure gradient

All circulation models using terrain-following coordi-
nates suffer from the so-called hydrostatic inconsistency,
which stems from the fact that terrain-following coordi-
nates do not conform to the geo-potentials (Gary, 1973;
Blumberg and Mellor, 1987; Haney, 1991; Shchepetkin
and McWilliams, 2003). As a result, the baroclinic pressure
gradient is evaluated as the difference between two large
components that tend to cancel each other, leading to large
round-off errors. Hydrostatic inconsistency can also be
viewed as the result of evaluating pressures at a grid point
effectively using extrapolation when steep bathymetric
slope is present (Shchepetkin and McWilliams, 2003).
Many remedies have been proposed to mitigate this prob-
lem, including evaluating the pressure gradient in the Z

coordinate (Fortunato and Baptista, 1996) or using
higher-order schemes (Song and Haidvogel, 1994; Shche-
petkin and McWilliams, 2003). While such remedies
seemed successful in dealing with a typical benchmark test
of a tall and isolated seamount in a stably stratified fluid
(with a density profile q(z)) with zero viscosity and diffusiv-
ity (Song and Haidvogel, 1994), there are 2 limitations to
this idealized test: (1) the test sheds no light on realistic sit-
uations where mixing is present, and (2) more importantly,
the density profile used in the test violates the bottom
boundary condition oq/oz = 0, except in the trivial case
of density reaching a constant value below the shallowest
depth (which is not what was used in the test). Therefore,
theoretically, the analytical solution of a perpetually
motionless state assumed in such a test is dubious at best.
In any case, although it may be somewhat mitigated by
using Z coordinate or higher-order integration schemes,
the hydrostatic inconsistency cannot be completely elimi-
nated in a terrain-following coordinate model (Pietrzak
et al., 2002).

In SELFE, the use of a hybrid coordinate system in the
vertical direction effectively alleviates hydrostatic inconsis-
tency because the Z levels used in the deeper part of the
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
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vertical grid do conform to geo-potentials and therefore
at least a part of the baroclinic pressure gradient calcula-
tion is not subject to the hydrostatic inconsistency. For
the upper part of the water column, where the S coordi-
nates are used, SELFE computes the gradient either (1)
in density Jacobian form (with the vertical density gradi-
ents calculated using a cubic-spline fit), or (2) in Z space
(with extra attention paid to the bottom and the surface,
to ensure the use of interpolation instead of extrapolation;
see Fortunato and Baptista, 1996). Together with higher-
order integration schemes as suggested by Song and Hai-
dvogel (1994), the two approaches generally yield compara-
ble results.

3.4. Baroclinic module

The core part of SELFE is the barotropic module as
described in Sections 3.2 and 3.3. To complete the model,
SELFE solves two more sets of equations: transport and
turbulence closure equations.

The advection in the transport equations is usually a
dominant process. SELFE treats the advection in the trans-
port equations with either an ELM or FVUM. If the ELM
is used, the transport equations are solved at nodes and
side centers along each vertical column using a finite-ele-
ment method, with the lumping of the mass matrix to min-
imize numerical dispersion (in the form of under- or over-
shoots). As discussed in Section 3.3.1, the order of interpo-
lation used in ELM is important since linear interpolation
leads to excessive numerical diffusion. To reduce the
numerical diffusion, element-splitting or quadratic interpo-
lation is used in ELM (Zhang et al., 2004).

Despite its efficiency, one of the main drawbacks of the
ELM approach is its disregard for mass conservation (Oli-
veira and Baptista, 1998). On the other hand, FVUM guar-
antees mass conservation. In FVUM, the scalar variables
(salinity or temperature) are defined at the center of a
prism, (i,k), which has five exterior faces (top and bottom
with areas bS i;k and bS i;k�1, and three vertical faces with areasbP jsj;k; see Eq. (35) and Fig. 3c). The discretized temperature
equation reads:

T nþ1
i;k V n

i;k þ DtðunÞnþ1
i;k
bSi;kT nþ1

upði;kÞ þ DtðunÞnþ1
i;k�1Ŝi;k�1T nþ1

upði;k�1Þ

¼ DtAi jn
i;k

T nþ1
i;kþ1 � T nþ1

i;k

Dzn
i;kþ1=2

� jn
i;k�1

T nþ1
i;k � T nþ1

i;k�1

Dzn
i;k�1=2

" #

þ V n
i;k T n

i;k þ
_Q

q0Cp
Dt

� �
� Dt

X3

l¼1

qnþ1
l T n

upðjsj;kÞ;

ðk ¼ kb þ 1; . . . ;N zÞ; ð41Þ

where ‘‘up()” indicates upwinding, Vi,k is the volume of the
prism, un is the outward normal velocity, jsj = js(i, l) are
three sides, and qnþ1

l ¼ bP jsj;kðunÞnþ1
jsj;k are 3 horizontal advec-

tive fluxes. The salinity equation is similarly discretized.
Note that Eq. (41) reduces to Eq. (35) when T = const.
and _Q ¼ 0.
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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The stability condition for the upwind scheme, the Cou-
rant number restriction, is given by:

Dt 6
V i;kP

j2Sþ jqjj
; ð42Þ

where S+ indicates all outflow horizontal faces. Were the
vertical advective fluxes on the left-hand side of Eq. (41)
treated explicitly, the denominator in Eq. (42) would in-
clude the outflow faces for the top and bottom faces as well
(Sweby, 1984; Casulli and Zanolli, 2005). But since the
advective fluxes at the top and bottom faces are treated
implicitly, S+ excludes the top and bottom faces, and thus
the more stringent stability constraints associated with the
vertical advective fluxes are by-passed. The Courant num-
ber restriction (Eq. (42)) may still be too severe, and in this
case the sub-division of a time step is necessary. Despite the
fact that Eq. (41) does not conform to the depth-integrated
continuity Eq. (31), the FVUM guarantees mass conserva-
tion and the maximum principle (i.e., the solution is
bounded by the maximum and minimum of the initial
and boundary conditions; Casulli and Zanolli, 2005), and
thus is usually preferred over the ELM approach. To fur-
ther reduce the numerical diffusion, we have recently imple-
mented a higher-order finite-volume TVD scheme in
SELFE (Sweby, 1984).

SELFE solves the turbulence closure equations (Eqs. (6)
and (7)) along each vertical column at each node with a
finite-element method. The vertical mixing terms and the
dissipation term in these equations are treated implicitly,
but the production and buoyancy terms are treated either
implicitly or explicitly, depending on the sign of their total
contribution (Zhang et al., 2004). The advection terms in
the turbulence closure equations are small compared to
other terms, and are therefore neglected in SELFE.
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R3.5. Numerical stability

Assuming a uniform grid and constant coefficients, a
stability analysis of SELFE closely follows that in Casulli
and Cattani (1994), because of similar matrix structures
shared between the two models. It can be shown that
SELFE is stable for 1/2 6 h 6 1, with the highest degree
of accuracy achieved at h = 1/2 (Casulli and Cattani,
1994). The explicit treatment of the baroclinic and horizon-
tal viscosity terms does impose stability constraints for the
time step and grid size. A stability condition for the baro-
clinic term in SELFE is given by (Zhang et al., 2004):

Dt
ffiffiffiffiffiffi
g0h
p

Dxy
6 1; ð43Þ

where

g0 ¼ g
Dq
q0

ð44Þ
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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is the reduced gravity due to stratification. A stability con-
dition for the horizontal viscosity term is tied to the local
diffusion number (Casulli and Cheng, 1992):

lDt

D2
xy

6
1

2
: ð45Þ

Note that the constraints Eqs. (43) and (45) are much
milder than the CFL condition. In particular, the condition
in Eq. (45) no longer applies when no horizontal viscosity is
used (l = 0). Also the internal wave speed as appeared in
Eq. (43) is at least an order of magnitude smaller than
the surface wave speed. Therefore exceptionally large time
steps can be used in SELFE; for example, a time step of 90s
was used in forecasting the Columbia River estuary and
plume with a grid size as small as 80 m.

As indicated in Section 3.4, an additional stability con-
dition arises if the FVUM is used to solve the transport
equations (cf. Eq. (42)). Therefore a smaller time step is
usually used to solve the transport equations.
D
P4. Numerical benchmarks

In this section, we present results from SELFE for five
benchmark tests of increasing complexity, and compare
the results to those from ELCIRC to show the improve-
ments over ELCIRC.
4.1. Wave run-up on a quarter-annulus domain

4.1.1. One-dimensional convergence test
We first test the barotropic module of SELFE and con-

duct a convergence study with a simple problem that has a
linearized analytical solution (Lynch and Gray, 1978). In
this test, the domain is a quarter annulus with a linear bot-
tom slope and a depth varying from 25.05 m at the outer
boundary to 10.02 m at the inner boundary (Fig. 4). Note
that the problem is essentially 1D in the sense that the ana-
lytical solution varies in the radial direction only. An M2

tide of 0.3048 m is imposed at the outer boundary, and
all the other boundaries are closed. The bottom is friction-
less, and the vertical viscosity and Coriolis force are not
included in the test. Although negligible once the steady
state is reached, non-linearity was found to be important
in setting up the wave motion from rest, and was therefore
retained in the simulation. Since the ELM formulation
requires an inflow condition at the open boundary, the ana-
lytical velocity is imposed there.

Two S layers were used in SELFE runs, and one Z layer
was used in ELCIRC runs. However, results were found to
be insensitive to the choices of vertical grid, and differences
between the ELCIRC and SELFE results shown below are
attributed to two limitations of ELCIRC identified earlier
(low-order shape functions; orthogonality requirements).
A family of horizontal grids, all symmetric with respect to
the 45� line (Fig. 4a), was used in the study. The implicitness
factor was set at 0.6. Results from the last 4 days of the 7-
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig. 4. (a) Quarter-annulus domain with a horizontal discretization and the bathymetry shown. The inner and outer radii are R1 = 60,960 m,
R2 = 152,400 m. (b) An orthogonal grid generated by JANET used for the 3D test. The deviation from orthogonality is very small; for example, the
maximum ratio of the distance between the two circumcenters of the two triangles split from each quadrangle, and the equivalent radius of each element is
only about 9 � 10�6.
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day run were harmonically analyzed, and the averaged root-
mean-square (RMS) errors for amplitudes and phases over
the entire domain were examined for convergence with
respect to the time step and grid size used in the test.
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
The convergence with respect to the time step (with the
grid resolution in the radial direction being fixed at
Dr = 10160 m) is typical of any ELM-based method includ-
ing SELFE and ELCIRC (Fig. 5). The RMS errors actu-
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig. 5. RMS errors of (a) amplitudes and (b) phases for elevation and radial velocity as a function of time step used. No horizontal viscosity is used
(c = 0).
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ally decrease with an increase in the time step because the
reduced numerical diffusion in ELM at larger steps more
than compensates for the increased truncation errors in
time. For most time steps tested, SELFE has larger errors
in amplitude while ELCIRC has larger errors in phase.
ELCIRC also responds dramatically to the change in time
step for Dt < 150 s.

Note that there is a non-linear feedback loop between
the Lagrangian solution of advection and the solution of
the continuity equation and the Eulerian part of the
momentum equation, because velocities used in the track-
ing of characteristic lines are part of the solution. This
explains why the errors in Fig. 5 do not strictly conform
U
N

C
O

R
R

Fig. 6. RMS errors of (a) amplitudes and (b) phases for elevation and radial ve
used (c = 0). Note the non-convergence of ELCIRC in (a). For SELFE, th
amplitude), 1.55 (radial velocity amplitude), 1.43 (elevation phase), and 1.36 (

Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
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to Dt�1 as suggested by Eq. (36). Note also that the average
Courant number, dominated by the surface wave speed in
this test, is between 0.08 (for Dt = 60 s) and 1.25 (for
Dt = 900 s). Hence, larger time steps (with the Courant
number on the order of 1 or larger) can and need to be used
in SELFE or ELCIRC to achieve better accuracy. This
peculiar behavior of ELM does not invalidate the method
itself since convergence is guaranteed as Dt ? 0, with the
Courant number being fixed (in other words, with
Dx ? 0 as well; Baptista, 1987).

Fig. 6 shows the convergence of the two models with
respect to the grid resolution, the time step being fixed at
Dt = 300 s. The grid is uniformly refined in both radial
locity as a function of grid size, with Dt = 300 s. No horizontal viscosity is
e linear regression slopes (the rate of convergence) are: 1.68 (elevation
radial velocity phase).

E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig. 7. 3D quarter-annulus test. (a) Isolines of amplitudes (normalized by
0.1 m) computed from analytical solution (solid lines) and SELFE (dashed
lines). (b) Isolines of amplitudes (normalized by 0.1 m) computed from
analytical solution (solid lines) and ELCIRC5.01 (dashed lines). (c)
Isolines of amplitudes (normalized by 0.1 m) computed from analytical
solution (solid lines) and ELCIRC5.01 with an orthogonal grid (see
Fig. 4b) (dashed lines). The increment between adjacent isolines is 0.1. The
mismatch on the outer boundary in (b) and (c) is due to the way elevation
boundary condition is imposed in ELCIRC (see text). The average errors
for (a), (b) and (c) are 0.003 and 0.013, 0.024.

Fig. 8. Analytical solution of the amplitudes of surface (a) u and (b) v (in
m/s).
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and azimuthal directions, and so the aspect ratio of each ele-
ment is kept unchanged. As Dr ? 0, the Courant number
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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becomes very large, and so the adverse effect of the numeri-
cal diffusion on accuracy mentioned in the previous para-
graph is not an issue here; convergence is expected. The
convergence rate for SELFE is lower than second order
for this family of non-uniform grids. The phase errors in
SELFE are smaller than those in ELCIRC (Fig. 6b), but
the rate of decrease in the amplitude errors is larger in
ELCIRC than in SELFE, and SELFE has larger amplitude
errors for Dr < 17.5 km (Fig. 6a). However, ELCIRC results
for the amplitude clearly show divergence as Dr ? 0. The
root cause for this divergence is that the family of grids used
here is non-orthogonal. Due to the finite-difference frame-
work used in UnTRIM-like models, grid orthogonality is
a requirement for those models, which we confirm here for
ELCIRC. SELFE, on the other hand, does not suffer from
such a restriction and runs on general unstructured grids,
a flexibility that is invaluable in practical applications.

4.1.2. Three-dimensional test

Lynch and Officer (1985) derived an analytical solution
for a corresponding 3D case to the simple 1D problem
shown in Section 4.1.1. In this sub-section this solution is
used to quantitatively gauge the performance of ELCIRC
and SELFE in a more complex setting than the 1D problem.
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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In this test, we set the horizontal extent of the domain
exactly the same as in the 1D case. The bottom depth
changes quadratically along the radial direction, and the
bottom is no-slip. The Coriolis and horizontal viscosity
are both neglected, but the vertical viscosity is proportional
to h2. The choices of the bottom depth and the vertical vis-
cosity are necessary for the analytical solution to exist. An
M2 tide with an amplitude of 0.1cos(2#) is imposed at the
outer boundary; therefore, there is a 180� phase change at
# = 45�. Other details of the setup can be found in (Lynch
and Werner, 1991).
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Fig. 9. Errors in amplitudes of surface (a) u and (b) v, calculated f

Fig. 10. Errors in amplitudes of surface (a) u and (b) v, calculated fr

Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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For both models, an 18 � 24 symmetric grid was used in
the horizontal direction. Eleven equally spaced r levels
were used in the SELFE simulation, while 20 equally
spaced Z levels with 1 m resolution were used in the
ELCIRC simulation. A large bottom drag coefficient of
1.0 was used to approximate the no-slip bottom. A time
step of 2.5 min was used for both models, which were
run for a total of 10 days, with a 2-day spin-up.

Fig. 7a and b shows a comparison of elevation ampli-
tudes (normalized by 0.1 m appeared in the boundary con-
dition) computed from a harmonic analysis of the
E
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F
rom SELFE. The average errors are 8 mm/s for both u and v.

om ELCIRC. The average errors are 14 mm/s for both u and v.
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Fig. 11. Errors in amplitudes of surface (a) u and (b) v, calculated from ELCIRC on an orthogonal grid (Fig. 4b). The average errors are 12 mm/s for both
u and v.

5 We used the terms ‘‘volume/mass conservation” in the most traditional
sense, i.e., change in volume/mass in a region should be accounted for by
the boundary fluxes and internal sources and sinks. Definition of volume/
mass in SELFE is given on page 20.
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analytical and numerical solutions for the last 6 days. The
mismatch between ELCIRC and analytical elevations at
the outer boundary, especially in regions of larger ampli-
tudes, is due to the staggering scheme used in ELCIRC;
in ELCIRC the elevation boundary condition is imposed
at element centers not nodes and the elevations at nodes
are computed from elevations at element centers using an
averaging scheme (Zhang et al., 2004). The averaging
scheme has resulted in larger errors in this 3D case than
the simple 1D case in Section 4.1.1, and therefore a finer
grid seems to be needed in ELCIRC to overcome this prob-
lem. The SELFE solution is clearly more accurate than the
ELCIRC solution, which is reflected in the normalized
average errors in the entire domain (0.003 m vs. 0.013 m).
The analytical amplitudes of the two horizontal compo-
nents of the surface velocity are plotted in Fig. 8. The larg-
est velocity occurs near the interior wall due to the strong
traverse flow in the azimuthal direction. The errors in the
SELFE and ELCIRC velocity amplitudes are shown in
Figs. 9 and 10, respectively. Not surprisingly, the largest
discrepancy for both models occurs in the region where
the velocity is largest. In addition, the ELCIRC solution
also has large errors on the two side walls (Fig. 10). The
average error for either u and v in SELFE is 8 mm/s as
compared to 14 mm/s in ELCIRC. Comparison of time
series at various locations (not shown) indicate that
SELFE accurately captures the main features of the veloc-
ity field at all tidal stages during the 10-day run, while
ELCRC has large errors during the reversal stages.

To assess the role of non-orthogonality in the accuracy
of ELCIRC results, we built an alternative grid with the
commercial software JANET (from Smile Consulting, Ger-
many). The grid, as shown in Fig. 4b, consists of quadran-
gles that are combined from the original triangles, and has
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
E
Da very small deviation from strict orthogonality (see

Fig. 4b). With this new grid, while the velocity amplitudes
are slightly improved from the previous ELCIRC results
(Figs. 10 and 11), the elevation amplitudes are 85% worse
(Fig. 7b and c). Therefore the inferior results obtained in
ELCIRC can not be attributed to orthogonality, and are
more likely due to the low-order shape functions and/or
the vertical coordinates.
4.2. Volume conservation test on a river segment

Local volume conservation has long been questioned for
finite-element models5 and indeed some early finite-element
circulation models suffered from serious volume conserva-
tion problems due to the use of the Generalized Wave-Con-
tinuity Equation (GWCE) (ADCIRC; QUODDY).
GWCE is a blend of continuity and momentum equations,
used to fend off unphysical parasitic oscillations that orig-
inate from the non-staggering scheme used in the Finite-
Element Method (Westerink et al., 2004). The choice of
the relative weight between the two equations used in
GWCE leads to either a loss in volume conservation or
parasitic oscillation. Even with a relatively ‘‘primitive”

form of GWCE (i.e., with a very small weight), significant
volume imbalance can occur.

SELFE solves the primitive form of the continuity equa-
tion, and thus has a much improved conservation property
relative to GWCE-based models, despite the fact that vol-
ume conservation is not enforced explicitly. Numerous
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig. 12. (a) A river segment used to test volume conservation. Steady flow is imposed upstream of transect 2, and the flow rates are measured at both
transects. (b) Time history of flow rates as measured at the two transects. ELCIRC results are indistinguishable at this scale.
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tests that we have completed so far confirmed this finding,
and here we present the results for the same test previously
used for ELCIRC (Zhang et al., 2004).

The domain was based on the upper stretch of the Colum-
bia River from Bonneville Dam to Longview, with channels
and flats retained (Fig. 12a). The ELCIRC set-up for this
problem can be found in Zhang et al. (2004). In the SELFE
run, eleven S levels were deployed in the vertical grid – with
hc = 5 m, hb = 0.9, and hf = 8. A steady discharge of
10,000 m3/s was imposed at Bonneville Dam, and the eleva-
tion at Longview was clamped at g = 0. The bottom drag
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
coefficient (CD) was set at 0.0025, and the horizontal viscos-
ity coefficient, at c = 0.05 (we found that the conservation is
not sensitive to the choices of CD or c). The turbulence clo-
sure scheme of GLS as k-kl was used to compute the vertical
viscosity and the vertical diffusivity, but the latter was not
used in this barotropic case. The Coriolis factor was set to
the latitude of the Columbia River (46�N). A time step of
300 s was used. The flow rates were measured at the two
transects indicated in Fig. 12a throughout the run, and if
volume conservation is perfect, the two rates should con-
verge to 10,000 m3/s after a steady state is established.
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,



T

O
F

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

11871187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Fig. 13. Isolines of salinity at t = 12hr, in increment of 0.5PSU.
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SELFE results indicate that the flow reaches a steady
state soon after the ramp-up period of 2 days (Fig. 12b).
The flow rates at the two transects converge to the imposed
value at Bonneville with no more than 0.6% error, which is
slightly worse than the ELCIRC error (0.002%). Further-
more, the volume conservation error remains at this low
level and does not increase in time. The error in ELCIRC
is mainly due to round-off errors as volume conservation
is enforced by the finite-volume method used therein. Obvi-
ously the volume conservation property of SELFE is
important as mass conservation in many transport pro-
cesses will depend on a non-divergent flow field.

4.3. Adjustment under gravity

To evaluate the performance of the baroclinic model, we
investigate the simple problem of adjustment under gravity,
or exchange flow in a rectangular box (Lynch and Davies,
1995). Initially the box contains two fluids of different den-
sities (q1 and q2) at rest, each occupying half of the domain.
Gravity force will cause the heavier fluid (q2) to sink and
lighter fluid to rise, and internal waves are generated at
the interface, and the speed of the internal waves can be
estimated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghðq2 � q1Þ=q1

p
.

In the SELFE run, the domain of
64 km � 20 km � 20 m was evenly discretized in x and y

with Dx = Dy = 500 m (with each rectangle split into two
triangles), and 23 (traditional) r levels were used in the ver-
tical grid, with slightly higher resolution (�0.5 m) near the
bottom. There is no open boundary in this problem. The
bottom was treated as frictionless, and the viscosities, diffu-
sivity and Coriolis factor were all neglected
(m = l = f = j = 0). A time step of 300 s was used. The
more accurate fifth-order Runge–Kutta method was
employed for the advection in the momentum equation.
To facilitate comparison with ROMS results (http://
marine.rutgers.edu/poasfJan.2005), the initial salinity dis-
tribution in the x-direction was approximated by

S ¼ 6:25

2
1� tanh

x� 32000

1000

	 

; ð46Þ

and the temperature was fixed at 4 �C throughout the run.
The choices of the initial salinity and temperature were
made to emulate the initial condition used in ROMS (i.e.,
the initial density varying from 1000 to 1005 kg/m3). The
positions where the 1002.5 kg/m3 isopycnal intersects the
surface and bottom were used to compute the average
internal wave speed, which was compared with the linear-
ized analytic value given in the previous paragraph as well
as ROMS and ELCIRC results (Zhang et al., 2004).

The two different approaches to solve the transport
equations (ELM vs. FVUM) were found to give similar
results for the internal wave speed, and mass conservation
errors were negligible with either approach. The salinity
profile at the end of the 12-hour simulation, generated
using ELM, is shown in Fig. 13 (cf. Fig. 10 in Zhang
et al., 2004). The internal wave speed calculated by SELFE
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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is 90.3% of the analytical value, which compares well with
the 90–94% range obtained with ROMS with various
parameter choices; on the other hand, the best ELCIRC
result, with the same horizontal resolution (but with rect-
angular elements) and initial vertical resolution and the
same choices of parameters (diffusivity, bottom friction
etc) and fifth-order Runge–Kutta tracking, is only 85%.
This again confirms the better accuracy of SELFE over
ELCIRC. For this case, the grid orthogonality is not an
issue for ELCIRC (as uniform rectangles are used), and
the vertical representations are essentially equivalent for
both models. Therefore the root cause for the difference
is likely the lower-order shape functions used in ELCIRC.

4.4. Unforced Columbia River plume

Given the important influence of freshwater plumes on
physical, chemical, and biological processes along coastal
oceans, many researchers have studied freshwater plumes
using various models. Physically, the freshwater plume is
essentially a surface trapped process with strong stratifica-
tion occurring near the surface. Kourafalou et al. (1996ab),
Garvine (1999), and Garcia-Berdeal et al. (2002) used ter-
rain-following coordinate models to investigate the plumes
on idealized geometry and bathymetry with very mild bot-
tom slope. Whitney and Garvine (2006) studied the Dela-
ware Bay outflow with ECOM3D, a descendant of POM
(Blumberg and Mellor, 1987), and compared numerical
results with observation. In their study the bottom slope
is very mild (�0.03�) and the plume extent is very small
(only about 15 km offshore; cf. their Fig. 6) as the estuary
is well mixed by tides even during freshet month of April
(with average freshwater discharge of 1100 m3/s). The mild
slopes found in these studies effectively masked the diffi-
culty for terrain-following coordinate models by alleviating
the hydrostatic inconsistency.

For many large rivers like Columbia River, the freshwa-
ter plume extends hundreds of kilometers offshore into
regions with steep bottom slope. For example, the Astoria
Canyon, which is situated �23 km from the mouth and
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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well within the reach of the Columbia River plume most of
the time, has an average slope of 3�, with the adjacent shelf
break having roughly the same steepness (cf. Fig. 14b).
Therefore the test presented in this sub-section is a very
severe test for any terrain-following coordinate model. In
fact, the plume predicted by the ‘‘pure S” SELFE model
disintegrates no later than 2 weeks, even if a large number
of vertical levels are used. The plume is stabilized with the
addition of Z layers below the S layers. Together with the
fact that the authors have successfully studied the freshwa-
ter plume of the Columbia River using the Z coordinate
model ELCIRC (Zhang et al., 2004; Baptista et al.,
U
N
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R
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C

T

Fig. 14. Surface plume at t = 2 weeks. The salinity contour is from 0 to 32.5 PS
to 1500 m in increments of 100 m. (a) SELFE with hs = 50,000 m and ELM (pu
of the plume); (b) SELFE with hs = 50,000 m and FVUM; (c) SELFE with hs =
hs = 100 m and ELM; (f) SELFE with hs = 100 m and FVUM; (g) SELFE wit
the transect used in Fig. 15.

Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
F

2005), we conclude that the hydrostatic inconsistency is
the root cause for the failure of the pure S model of SELFE
for this problem.

We study the ‘‘unforced” river plume of the Columbia
River, i.e., without tides, ambient currents or wind stirring.
It is more challenging to study the ‘‘unforced” plume than
the real ‘‘forced” plume, as the tides, ambient currents and
wind would mask numerical instabilities. The unforced
plume also gives an indication of the residual plume under
mild winds and reveals some natural tendencies and key
features of the plume as indicated in Fong and Geyer
(2002). Therefore the study shown in this sub-section serves
E
D

P
R

O
O

U in increments of 2.5 PSU; the background bathymetry contour is from 0
re S model; different horizontal scale from other plots to see the full extent
1000 m and ELM; (d) SELFE with hs = 500 m and ELM; (e) SELFE with

h hs = 40 m and ELM; (h) ELCIRC. The broken line in Fig. 14a indicates

E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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Fig 14. (continued)

Table 1
Parameters used in the ELCIRC and SELFE run 5 for the plume test
(Section 4.4)

Model ELCIRC SELFE

Horizontal
grid

Hybrid triangular/
quadrangular elements

Triangular elements

Vertical grid 61 Z layers 17 Z + 36 S layers
Momentum Eulerian tracking + linear Eulerian tracking + linear
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as a crucial first step in successfully simulating the real
Columbia River plume.

As pointed out by many authors (Fong and Geyer,
2002; Isobe, 2005; Horner-Devine et al., 2006), the
unforced plume is only quasi-steady in the sense that the
bulge will grow at a rate proportional to (tR0)1/4 approxi-
mately, where R0 is the inflow Rossby number, because
the coastal jet in the direction of Kelvin wave propagation
cannot carry away the entire freshwater outflow. However,
it is important to differentiate between the quasi-steady
nature of the unforced plume and the disintegration of
the plume due to numerical instability discussed below.
As a matter of fact, none of the numerical studies men-
tioned at the beginning of this sub-section or field observa-
tion (Hickey et al., 1998; Baptista et al., 2005) published so
far have indicated such a mode of disintegration.

Realistic, unsmoothed6 bathymetry was used in this
study. The long-term average discharge of the Columbia
River, 7000 m3/s, was the only external forcing applied to
the system and was imposed at �88 km upstream from
the mouth which is beyond the maximum salt intrusion.
The ambient ocean salinity and temperature were set at
33 PSU and 10 �C. A total of 37,146 triangles was used
in the horizontal grid, with a higher resolution (<500 m)
concentrated in the near-plume and estuary regions. The
closure scheme of k�kl (Umlauf and Burchard, 2003; Bap-
tista et al., 2005) was used. The spacing constants were cho-
sen as: hc = 30 m, hb = 0.7, hf = 10, and the time step was
set at 90 s, which translated to large Courant numbers in
the estuary and near-field plume (Baptista et al., 2005).

The results for the tests detailed in the next paragraph
are qualitatively similar between ELM and FVUM trans-
6 Bathymetry smoothing is commonly used in terrain-following models,
but we found that the pure S coordinates in SELFE cannot produce a
stable plume even with heavy bathymetry smoothing.

Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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Pport schemes, and therefore majority of tests were con-
ducted using ELM. However it is important to note that
the plume predicted by the FVUM scheme is generally
smaller than that predicted from the ELM scheme
(Fig. 14e and f), and the FVUM scheme has been found
to be more accurate than the ELM scheme when compared
with the real Columbia River plume, because the former is
mass conservative.

To assess the sensitivity of the plume to the choice of the
vertical grid, and to illustrate the origin and growth of the
numerical instability, we present results from the following
seven runs (different numbers of S and Z levels were used
to ensure that the transition of the vertical grid is smooth
between S and Z layers):

1. hs = 50,000 m, 0 Z layers, 60 S layers; ELM;
2. hs = 50,000 m, 0 Z layers, 60 S layers; FVUM;
3. hs = 1000 m, 5 Z layers, 40 S layers; ELM;
4. hs = 500 m, 8 Z layers, 36 S layers; ELM;
5. hs = 100 m, 17 Z layers, 36 S layers; ELM;
6. hs = 100 m, 17 Z layers, 36 S layers; FVUM;
7. hs = 40 m, 23 Z layers, 30 S layers; ELM.
advection interpolation ELM interpolation ELM
Transport

advection
Eulerian tracking + linear
interpolation ELM

Eulerian tracking + linear
interpolation ELM

Turbulence
closure

GLS as k–kl GLS as k–kl

E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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The first two runs are effectively pure S runs because hs is
larger than the maximum depth in the domain. We also
conducted a reference run with ELCIRC, using 61 Z layers
(see Baptista et al. (2005) for layer arrangement). Table 1
summarizes the main differences between run 5 (the best
ELM-based SELFE run) and the ELCIRC run. Compari-
sons of surface salinity profiles at the end of 2 weeks, across
all SELFE and ELCIRC runs, are shown in Fig. 14. The
horizontal scale is the same across all figures except in
the two pure S runs (Fig. 14a and b), where a different scale
was necessary to show the disintegrated plume.
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
Ocean Modell. (2008), doi:10.1016/j.ocemod.2007.11.005
It is clear from these figures that the plume is very sen-
sitive to the choice of the vertical grid, and in particular, to
the demarcation depth hs; no stable plume is obtained with
hs P 500 m (Fig. 14a–d). The instability starts as the plume
first reaches the Astoria Canyon, and thereafter the isoha-
lines become noisy and patchy and the vertical advection is
greatly exaggerated in this region. The balance of force
inside the plume bulge (see the discussions near the end
of this sub-section) breaks down and part of the freshwater
is directed southwestward, and eventually spins off to form
whirlpools of freshwater offshore. The stability increases as
E: A semi-implicit Eulerian–Lagrangian finite-element model ...,
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hs is reduced, and a stable plume is obtained when
hs < 500 m (Fig. 14e–g). Extension of the runs to 4 weeks
suggests similar results: the unstable plumes continue to
disintegrate while the stable plumes remain stable; the
bulge in the stable plumes will continue to grow but remain
circular. Comparison between Fig. 14e and f indicates that
the FVUM scheme has produced a tighter freshwater bulge
and a ‘‘saltier” plume than the ELM scheme. The plumes in
Figs. 14e and g are very similar to each other; comparison
with observation (after the external forcings being added)
indicates that the vertical grid used in run 6 yields the best
accuracy.

The cause for the disintegration becomes more apparent
if we examine the salinity profiles along a vertical transect
from the mouth to the Astoria Canyon (Fig. 14a). Fig. 15
shows the evolution of the isohalines along such a transect
in the top 70 m. For hs = 100 m or 40 m, the plume thins
out rapidly in the cross-shore direction, which is the
expected behavior of the plume (Fong and Geyer, 2002)
(Fig. 15a and b). For hs P 500 m, the plume thins out
smoothly until it encounters the steeper slope in Astoria
Canyon and adjacent shelf break (Fig. 15c–e). Numerical
instability in the form of wave-like wiggles starts to develop
there and quickly grows over time and spreads to deeper
depths. The larger hs is the sooner and deeper the wiggles
develop. As hs is increased, more S coordinate lines are
drawn towards the bottom in the deeper depth, which in
turn leads to larger truncation errors in the evaluation of
the baroclinic pressure gradient. Different methods for
evaluating the baroclinic pressure gradient, using either
density Jacobian form or the Z-space approach in conjunc-
tion with the third-order integration rule, yielded essen-
tially the same results. We hypothesize that other
sophisticated methods will unlikely yield substantially bet-
ter results. The origin of this instability is, in all likelihood,
hydrostatic inconsistency. The deeper Z layers effectively
act as a ‘‘stabilizer” in preventing the wiggles from growing
because the Z coordinates do not suffer from the hydro-
static inconsistency. Therefore the hybrid SZ coordinates
used in SELFE are crucial in obtaining a stable plume.

The stable plumes as in Fig. 14e–h show a nearly circu-
lar bulge with anti-cyclonic turning of the freshwater
immediately outside the mouth and a narrow coastal jet
propagating northward in the form of a Kelvin wave.
The southward extent of the plume is limited. All these fea-
tures are consistent with the results from previous idealized
studies (Kourafalou et al., 1996a,b; Garvine, 1999; Garcia-
Berdeal et al., 2002). Due to the large river discharge and a
narrow mouth in Columbia River, the Rossby number
(�0.4) is high and therefore the bulge is nearly circular
instead of semi-circular (Fong and Geyer, 2002). As shown
by Fong and Geyer (2002) and Horner-Devine et al. (2006),
the coastal jet is nearly geostrophic, and inside the bulge
centrifugal and Coriolis forces balance the pressure gradi-
ent (‘‘gradient-wind” balance). The noisy isohalines inside
the bulge as discussed above initially increase the pressure
gradient, which in turn enhances the centrifugal accelera-
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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tion. As a result, parts of the plume are detached from
the main bulge and spun off as freshwater whirlpools.

SELFE runs �3.2 times faster than real time on a
2.2 GHz AMD Opteron processor for run 6, with approx-
imately 2.4 million active prism faces. The horizontal and
vertical grids used in run 6 are essentially the same as those
used for forecast and multi-year hindcasts. By contrast,
ELCIRC with 61 Z layers runs �5 times faster than real
time, i.e., 1.56 times faster than SELFE. Although the rel-
ative efficiency of SELFE and ELCIRC depends on the
details of the problem and grid and parameter choices,
we find SELFE to be moderately more expensive than
ELCIRC in most cases, mainly because of the evaluation
of the finite-element integrals.

5. Concluding remarks

The development of SELFE as a model to predict baro-
clinic circulations in bays and estuaries was driven by the
challenges in modeling cross-scale ‘‘river-to-ocean” circula-
tion. The use of semi-implicit time stepping, Eulerian–
Lagrangian treatment of advection, and a formal finite-ele-
ment framework has enabled SELFE to efficiently and
robustly simulate complex circulations as found in the
Columbia River. The strong computational performance
of SELFE is supported by the findings presented in this
paper.

Since 2005, SELFE has become an integral part of the
Columbia River observing system CORIE (Baptista,
2006), replacing ELCIRC (Zhang et al., 2004) as the
default model for generating CORIE daily forecasts (e.g.,
Fig. 2) and long-term simulation databases (e.g., Fig. 1)
of Columbia River estuarine and plume circulation.
SELFE is also at the core of a rapid-deployment national
estuarine forecasting system (NEFS), under development
as a pilot project for the US Integrated Ocean Observing
System. Results from SELFE in the context of CORIE
and NEFS will be described in separate publications.
SELFE is an open-source code, available at http://
www.ccalmr.ogi.edu/CORIE/modeling/selfe/.
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Appendix A. Terrain-following coordinates in SELFE

As discussed in Section 3.1, the terrain-following gener-
alized S–coordinate system (Song and Haidvogel, 1994) is
used in the upper part of the water column. The transfor-
mation from S to Z is given by:

z ¼ gð1þ rÞ þ hcrþ ð~h� hcÞCðrÞ
ð�1 6 r 6 0Þ

CðrÞ ¼ ð1� hbÞ sinhðhf rÞ
sinh hf

þ hb
tanh hf ðrþ1=2Þ½ ��tanhðhf=2Þ

2 tanhðhf=2Þ

ð0 6 hb 6 1; 0 < hf 6 20Þ

8>>>><>>>>: ð47Þ

where ~h ¼ minðh; hsÞ is a ‘‘restricted” depth, hc is a positive
constant dictating the thickness of the bottom or surface
layer that needs to be resolved, and hb and hf are constants
that control the vertical resolution near the bottom and
surface. As hf ? 0, the S coordinates reduce to the tradi-
tional r-coordinates:

z ¼ eH rþ g; ð48Þ

where eH ¼ ~hþ g is the restricted total water depth. For
hf >> 1, more resolution is skewed towards the boundaries,
and the transformation becomes more non-linear. If
hb ? 0, only the surface is resolved, not the bottom, while
if hb ? 1, both are resolved. The latter case is particularly
important in coastal and oceanic applications, where both
bottom and surface processes are important (which is the
main reason that the S coordinates were chosen over the
r coordinates in SELFE). Unfortunately, the S coordinate
system becomes invalid in shallow depths; a sufficient con-
dition for a valid S transformation can be derived from
z0(r) > 0 as:eH > h0eh > hc

g > �hc � ð~h� hcÞ hf

sinh hf

8><>: ð49Þ

The first condition in this equation simply requires that the
spot is ‘‘wet”, with h0 being a specified minimum depth of
water. For a wet location, the S coordinate system becomes
degenerate when ~h 6 hc (i.e., the depth is too shallow) or
g 6 �hc � ð~h� hcÞ hf

sinh hf
(i.e., the surface falls below a cer-

tain threshold). In either case, the transformation Eq.
Please cite this article in press as: Zhang, Y., Baptista, A.M., SELF
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(47) becomes non-monotonic, and the S coordinates need
to be replaced by the traditional r coordinates, which are
uniformly valid at all depths. Where a transition from S

to r is warranted, we use the following strategies to make
the transition smooth:

1. ~h 6 hc: In SELFE, the transformation Eq. (47) is
replaced by:

z ¼ eH rþ g; ð50Þ
From Eq. (47), as ~h! hþc , the S coordinates approach r
coordinates, and therefore, the transition from shallow to
deep regions is smooth.
2. ~h > hc, but g 6 �hc � ð~h� hcÞ hf

sinh hf
. In this case, the

‘‘nearest valid set” is:

r̂ ¼ ẑ�ĝ
~hþĝ

ĝ ¼ b �hc � ð~h� hcÞ hf

sinh hf

h i
ẑ ¼ ĝð1þ rÞ þ hcrþ ð~h� hcÞCðrÞ

8>>><>>>: ; ð51Þ

where b = 0.98 is a safety factor. In practice, this case will
unlikely be encountered if a sufficiently large hc (e.g.,
hc > 5 m) is used; a large hc is recommended for most
SELFE applications.
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