

Applications of ELCIRC at LNEC

stratification in the **Guadiana** estuary

tidal propagation in the bidos lagoon

Lígia Pinto Anabela Oliveira André B. Fortunato

utline

- Stratification in the Guadiana estuary
 - The Guadiana estuary
 - Objectives
 - Field data review
 - Model set-up and validation
 - Stratification analysis
 - Summary and conclusions
- Tidal propagation in the Óbidos lagoon

he Guadiana estuary

River flow:

Year	Monthly-averaged river flow (m³/s)	
	min	máx
Dry	2.5	14.2
Wet	13	277
Very wet	15	1480

- Semi-diurnal tides: 0.6 3.5 m
- Old stratification analysis (empirical criteria)
 - well-mixed:Q < 10 m³/s
 - stratified:
 Q > 100 m³/s

O bjectives

- Analyze the conditions for stratification in the Guadiana estuary
- Characterize the salinity field under stratified conditions

Combination of field data analysis and numerical modeling

Field data review

2001 Data campaigns

Date	Stations	River flow (m ³ /s)	Tides
Feb. 2		384	neap tide
Feb. 10	V.R.S.António	2005	spring tide
Sept. 11	Odeleite	4	neap tide
Sept 18		4	spring tide
May 23		70	spring tide
May 29	2.01	35	neap tide
Oct. 18	2.02	20	spring tide
Oct. 24		249	neap tide

- 14 h vertical profiles, 1 m spacing in the vertical
- ADCP at station 2.01 for February and September campaigns

Model set-up

Version 4.01 (triangular elements)

Domain discretization

- Horizontal: 12000 nodes, spacing 9-3600 m
- Vertical: 32 levels, spacing 0.75-200 m
- Extent defined through satellite images

Time step specification

sensitivity analysis: 5, 3, 2, 1.5 min

Horizontal diffusion: Set to zero

Level 2.5 Mellor-Yamada

- Estuary minimum mixing length: 0.15 m
- Sea minimum mixing length: 1 m

Boundary conditions

- Ocean: regional tidal model
- Upstream: daily averaged river flow & elevation
 - No elevation data
 - Run ADCIRC
 - Z0 function of river flow (linear function)

odel validation: Downstream station

Comparison for homogeneous conditions $(Q \sim 4 \text{ m}^3/\text{s})$:

- good representation of the magnitude and vertical structure of salinities
- errors below 2-6 ppt

Comparison for stratified conditions $(Q \sim 400 \text{ m}^3/\text{s})$:

- worse representation of the magnitude of salinities (errors ~ 10 ppt)
- decresing the estuary minimum mixing length to 5 cm did not improve
- Incorrect plume behavior in the continental shelf?

Model validation: Upstream station

Upstream station Odeleite, Q = 4 \text{ m}^3/\text{s}:

- reasonable representation of the magnitude of salinities (errors below 6-10 ppt)
- reasonable representation of the maximum salinity propagation

Model validation: ADCP data

Velocity: Comparison with ADCP data

- Reasonable representation of magnitude, vertical structure
- Good representation of flow inversion
- Near-bottom velocity is under-predicted
- Insufficient vertical resolution ?

Analysis of stratification

 $Q = 200 \text{ m}^3/\text{s}$

S

Using model ELCIRC

Simulations set-up

- © Constant river flow: 2, 10, 50, 100, 200 m³/s
- ◆ 30 day run, with 15 days warm-up⇒ spring and neap tides
- **○** 45 km transect through the main channel

Main findings

- Stratification increases: larger river flow, smaller tidal amplitudes and during ebb
- Saline front is less stratified than the downstream regions at flood slack
- Ebb slack: retention of saltier water in the deep points

Analysis of stratification

Stratification criterion (adapted from Prandle, 1985)

- Quantify stratification: $\delta S/\overline{S}$ criterion
 - $\delta S/\overline{S} < 0.15$ well mixed
 - $\delta S/\overline{S} > 0.32$ stratified

Using the stratification criterion with model results: variability in space and time

Main conclusions:

- Q = 2 m³/s: Well-mixed
- Q = 10 m³/s transition: Well-mixed for spring tides, except ebb slack; Stratified/partially mixed for ebb; stratified in part of domain, well mixed upstream for flood

A nalysis of stratification

Main conclusions:

- Q >= 50 m³/s: stratified even for spring tides
 - X empirical criteria; ✓ data
- tidal amplitude is dominant relative to river flow:

 $Q = 50 \rightarrow 200 \text{ m}^3/\text{s}$, stratification \nearrow

Spring → Neap, stratification 7 7 7

Conclusions

- Analysis of stratification
 - Stronger stratification for high river flows and small tidal amplitude.
 - Stratification occurs for river flows of 10 m³/s (empirical criteria overestimates limits)
 - Tidal amplitude is dominant relative to river flow in the strength of stratification
 - Contrast with frequently used empirical criteria, agrees with field data
 - Saline front is less stratified than the downstream regions
- Application of model ELCIRC
 - Excellent results of stability, efficiency
 - Adequate comparison with field data
 - Problems:
 - Need to specify both flux and elevation at inflow boundaries
 - Simulations with horizontal diffusion are unstable

Tidal propagation in the Óbidos lagoon

- The Óbidos lagoon
- Model set-up
- Field data review
- Model calibration: ADCIRC
- Model calibration and validation: ELCIRC
- Impact of dredging on tidal propagation
- Summary

The Óbidos lagoon

Semi-diurnal tides: 1.5 m

1980

1995

- Goal:
 - Simulate barotropic tides for several bathymetric configurations
 - Reproduce well the flood dominance
 - Reproduce well the wetting and drying

The Óbidos lagoon: bathymetry

Model set-up

Domain discretization

Horizontal: 20000 nodes, spacing 5-1300 m

Boundary conditions

Ocean: regional tidal model

Bathymetry

November 2000, July 2001 and October 2002

Model: ADCIRC

Time step: 0.6 s

Horizontal diffusion: 1 m²/s

Model: ELCIRC

Time step: 90 s

Model adaptations

- harmonic analysis of elevations and depthintegrated velocities
- Friction using Manning formulation

Field data review

2000-2002 water level measurements

Strong variation of tidal characteristics with bathymetry changes

odel calibration: ADCIRC

- Mass errors: Up to 50 % differences between ebb and flood tidal prisms
- ADCIRC simulations lead to ebb-dominated instead of flood-dominated system

Model calibration and validation: ELCIRC

Validation: October 2002

RMSE: 18 cm

errors in the flood and ebb durations: 13 %

Calibration: July 2001

- Mass errors:4% differences betweenebb and flood tidalprisms
- RMSE: 12 cm
- errors in the flood andebb durations: 1 %
- CPU time is 1/7 of
 ADCIRC CPU time

Impact of dredging on tidal propagation

M2 amplitudes

Tidal prism (% of November 2000 value)

Simulation		
July 2001	October 2002	
150 (Neap)	135 (Neap)	
198 (Spring)	145 (Spring)	

- Dredging increases tidal amplitude and tidal prism in the lagoon
- Dredging effects are still important 15 months later (October 2002)

Summary

- Calibration/validation of a system with a fast bathymetric evolution is difficult
- ADCIRC: mass conservation problems
- ELCIRC simulations:
 - stable
 - efficient
 - compared well with field data
 - Outputs in the frequency domain reduced storage requirements and can be used in morphodynamic simulations

Summary

Problem:

Very large velocity gradients in drying areas can lead to problems in morphodynamic and

